
Simulink® 3D Animation™
User's Guide

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® 3D Animation™ User's Guide
© COPYRIGHT 2001–2021 by HUMUSOFT s.r.o. and The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
August 2001 First printing New for Version 2.0 (Release 12.1)
July 2002 Second printing Revised for Version 3.0 (Release 13)
October 2002 Online only Revised for Version 3.1 (Release 13)
June 2004 Third printing Revised for Version 4.0 (Release 14)
October 2004 Fourth printing Revised for Version 4.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 4.1 (Release 14SP2)
April 2005 Online only Revised for Version 4.2 (Release 14SP2+)
September 2005 Online only Minor revision for Version 4.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 4.3 (Release 2006a)
September 2006 Online only Revised for Version 4.4 (Release 2006b)
March 2007 Online only Revised for Version 4.5 (Release 2007a)
September 2007 Online only Revised for Version 4.6 (Release 2007b)
March 2008 Online only Revised for Version 4.7 (Release 2008a)
October 2008 Online only Revised for Version 4.8 (Release 2008b)
March 2009 Online only Revised for Version 5.0 (Release 2009a)
March 2010 Online only Revised for Version 5.1.1 (Release 2010a)
September 2010 Online only Revised for Version 5.2 (Release 2010b)
April 2011 Online only Revised for Version 5.3 (Release 2011a)
September 2011 Online only Revised for Version 6.0 (Release 2011b)
March 2012 Online only Revised for Version 6.1 (Release 2012a)
September 2012 Online only Revised for Version 6.2 (Release 2012b)
March 2013 Online only Revised for Version 6.3 (Release 2013a)
September 2013 Online only Revised for Version 7.0 (Release 2013b)
March 2014 Online only Revised for Version 7.1 (Release 2014a)
October 2014 Online only Revised for Version 7.2 (Release 2014b)
March 2015 Online only Revised for Version 7.3 (Release 2015a)
September 2015 Online only Revised for Version 7.4 (Release 2015b)
March 2016 Online only Revised for Version 7.5 (Release 2016a)
September 2016 Online only Revised for Version 7.6 (Release 2016b)
March 2017 Online only Revised for Version 7.7 (Release 2017a)
September 2017 Online only Revised for Version 7.8 (Release 2017b)
March 2018 Online only Revised for Version 8.0 (Release 2018a)
September 2018 Online only Revised for Version 8.1 (Release 2018b)
March 2019 Online only Revised for Version 8.2 (Release 2019a)
September 2019 Online only Revised for Version 8.3 (Release 2019b)
March 2020 Online only Revised for Version 9.0 (Release 2020a)
September 2020 Online only Revised for Version 9.1 (Release 2020b)
March 2021 Online only Revised for Version 9.2 (Release 2021a)
September 2021 Online only Revised for Version 9.3 (Release 2021b)

Getting Started
1

Simulink 3D Animation Product Description . 1-2

Expected Background . 1-3

Workflow for Building and Using Virtual Worlds . 1-4
Virtual Reality World Models of Dynamic Systems 1-4
Set up Your Working Environment . 1-4
Build a Virtual Reality World . 1-5
Link to a Virtual Reality World . 1-6
View Dynamic System Simulations . 1-7
Share Dynamic System Simulation Visualizations 1-7

MATLAB Compiler Support . 1-8

X3D Support . 1-9
X3D . 1-9
Relationship of X3D and VRML . 1-9
X3D Support in Simulink 3D Animation . 1-9
Convert a VRML File to X3D Format . 1-10

Virtual Reality Modeling Language (VRML) . 1-11
Relationship of VRML and X3D . 1-11
VRML . 1-11
VRML Support . 1-11
VRML Compatibility . 1-12
Virtual World Coordinate System . 1-12
VRML File Format . 1-13

Virtual Reality World and Dynamic System Examples 1-16
Simulink Interface Examples . 1-16
MATLAB Interface Examples . 1-25

Installation
2

Set the Default Viewer . 2-2

Set Simulink 3D Animation Preferences . 2-5
Simulink 3D Animation Preferences Dialog Box . 2-6
3D World Editor Preferences Dialog Box . 2-7
Canvas Preferences Dialog Box . 2-8

v

Contents

Figure Appearance Preferences Dialog Box . 2-8
Figure Rendering Preferences Dialog Box . 2-9
Figure 2-D Recording Preferences Dialog Box . 2-11
Figure Frame Capture Preferences . 2-11
World Preferences Dialog Box . 2-12

Install V-Realm Editor . 2-14
V-Realm Editor Installation on Windows Platforms 2-14
V-Realm Builder Help . 2-15
Uninstall V-Realm Builder . 2-15

Test the Viewer Installation . 2-16
Section Overview . 2-16
Simulink Testing . 2-16
MATLAB Testing . 2-18

Simulink Interface
3

Connect Virtual Worlds and Models . 3-2
Output Simulation Data to a Virtual World . 3-2
Input Virtual World Data to a Model . 3-6
Change the Associated Virtual World . 3-7

Open a Viewer Window . 3-9

Display Virtual World and Start Simulation . 3-10

View Virtual World on Host Computer . 3-12

View Virtual World Remotely . 3-15

Modify Remote Virtual World Via Sensor Events 3-19

Interact with Generated Code . 3-20

MATLAB Interface
4

Create vrworld Object for a Virtual World . 4-2

Open a Virtual World with MATLAB . 4-3

Interact with a Virtual World with MATLAB . 4-5
Set Values for Nodes . 4-5
Read Sensor Values Using MATLAB . 4-7

Close and Delete a vrworld Object . 4-9

vi Contents

Animation Recording . 4-10
Recording Formats . 4-10
Manual and Scheduled Animation Recording . 4-10

Define File Name Tokens . 4-12
Default File Name Format . 4-12
Uses for File Name Tokens . 4-12

File Name Tokens . 4-14

Manual 3-D Recording with MATLAB . 4-16

Manual 2-D AVI Recording with MATLAB . 4-18

Scheduled 3-D Recording with MATLAB . 4-20

Scheduled 2-D AVI Recording with MATLAB . 4-22

Record Animations for Unconnected Virtual Worlds 4-24

Play Animation Files . 4-27
Play Virtual World Animation Files . 4-27
Play AVI Animation Files . 4-28

Build Virtual Reality Worlds
5

Choose a Virtual World Editor . 5-2
Editors for Virtual Worlds . 5-2
Set the Default Editor . 5-5

Build and Connect a Virtual World . 5-8
Introduction . 5-8
Define the Problem . 5-8
Add a Simulink 3D Animation Block . 5-9
Open a New Virtual World . 5-10
Add Nodes . 5-11
Link to a Simulink Model . 5-17

Use Sensors . 5-20
Add Sensors to Virtual Worlds . 5-20
Read Sensor Values . 5-21

Detect Object Collisions . 5-23
Set Up Collision Detection . 5-23
Use Collision Detection Data in Models . 5-25
Use Collision Detection in MATLAB . 5-27
Use Collision Detection Data in Virtual Worlds . 5-27

Virtual World Data Types . 5-30
Field Data Types . 5-30
Virtual World Data Class Types . 5-32

vii

Simulink 3D Animation Textures . 5-34

Add Sound to a Virtual World . 5-35

Use CAD Models with the Simulink 3D Animation Product 5-36
Use of CAD Designs . 5-36
Import CAD Designs . 5-36
Integrate the Imported Model Virtual World . 5-36

Import STL and Physical Modeling XML Files . 5-38
Results . 5-38

Import 3D Models from CAD Tools . 5-40
Level of Detail Considerations . 5-40
Units Used in Exported Files . 5-40
Coordinate System Used . 5-41
Assembly Hierarchy . 5-41

Import VRML Models from CATIA Software . 5-45
CATIA Coordinate Systems . 5-45
Settings That Affect the VRML Output . 5-45
Level of Detail . 5-46
VRML Export Filter Settings . 5-46
VRML Models Exported from the CATIA Environment 5-46
Adjust the Resulting VRML Files . 5-48

Modify the CAD Model Virtual World . 5-51
Wrap Shape Objects with Transforms . 5-51
Add DEF Names . 5-51
Additional Virtual World Modifications . 5-52

Import Visual Representations of Robot Models 5-54
Import a DAE File . 5-54
Import a URDF File . 5-55
Import an SDF File . 5-56
Define Viewpoint to Make Imported Model Visible 5-58
Limitations . 5-58

Link to Simulink and Simscape Multibody Models 5-60
Link the Virtual World to a Simulink Model . 5-60
Initial Conditions . 5-61
VR Placeholder and VR Signal Expander Blocks 5-62
Link to Simscape Multibody Models . 5-62
Link to a MATLAB Model . 5-63

Using the 3D World Editor
6

3D World Editor . 6-2
Supported Platforms . 6-2
Use with Other Editors . 6-2
VRML and X3D Support . 6-2

viii Contents

Nodes, Library Objects, and Templates . 6-2

Open the 3D World Editor . 6-5
3D World Editor Is the Default Editor . 6-5
Open an Empty Virtual World . 6-5
Open a Saved Virtual World . 6-5
3D World Editor Panes . 6-6
Preferences for 3D World Editor Startup . 6-7

Create a Virtual World . 6-9

Edit a Virtual World . 6-11
Add Objects . 6-11
Copy and Paste a Node . 6-12
Edit Object Properties . 6-13
Document a Virtual World Using Comments . 6-14
Display Event Fields . 6-14
Expand and Collapse Nodes . 6-14
Highlight Nodes and Virtual World Objects . 6-15
Wrap Nodes as Children of Another Node . 6-16
Remove Nodes . 6-17
Save and Export Virtual World 3D Files . 6-17
Edit VRML and X3D Scripts . 6-18

Reduce Number of Polygons for Shapes . 6-20

Virtual World Navigation in 3D World Editor . 6-21
Specify Virtual World Rendering . 6-21
Basic Navigation . 6-21
Coordinate Axes Triad . 6-21
View Panes . 6-22
Pivot Point . 6-23
View All/View Selected . 6-23

3D World Editor Library . 6-26
3D World Editor Library Objects . 6-26
Add a Library Object . 6-26
Guidelines for Using Custom Objects . 6-27

Viewing Virtual Worlds
7

Virtual World Viewers . 7-2
Host and Remote Viewing . 7-2
Comparison of Viewers . 7-2

Simulink 3D Animation Viewer . 7-4
What You Can Do with the Viewer . 7-4
Viewer Uses MATLAB Figures . 7-5
Set Viewer Appearance Preferences . 7-6

ix

Open the Simulink 3D Animation Viewer . 7-7
Open from the VR Sink Block . 7-7
Open from the Command Line . 7-7

Simulate with the Simulink 3D Animation Viewer 7-8
Adjust Navigation Settings . 7-8

Specify Rendering Techniques . 7-9
Turn Off Rendering for Performance . 7-14

Navigate Using the Simulink 3D Animation Viewer 7-15
Basic Navigation . 7-15
Navigation Panel . 7-16
Viewer Keyboard Shortcuts . 7-18
Mouse Navigation . 7-18
Navigation Control Menu . 7-19
Change the Navigation Speed . 7-19
Sensors Effect on Navigation . 7-20
Display a Coordinate Axes Triad . 7-20
Pivot Point . 7-21

Set Viewpoints . 7-23
Define Viewpoints . 7-23
Reset Viewpoints . 7-25

Navigate Through Viewpoints . 7-26

Record Offline Animations . 7-29
Animation Recording . 7-29
Recording Formats . 7-29
File Names . 7-30
Start and Stop Animation Recording . 7-30
Play Animation Files . 7-31
Record 3–D Animation Files . 7-31
Record in Audio Video Interleave (AVI) Format . 7-31
Schedule Files for Recording . 7-33

Play Animations with Simulink 3D Animation Viewer 7-35

Configure Frame Capture Parameters . 7-36

Capture Frames . 7-37

Simulink 3D Animation Web Viewer . 7-38

Open the Web Viewer . 7-39
Set up for Remote Viewing . 7-39
Connect the Web Viewer . 7-39

Navigate Using the Web Viewer . 7-41
Display and Navigation . 7-41
Keyboard Shortcuts . 7-41
Web Viewer Preferences . 7-42

x Contents

Listen to Sound in a Virtual World . 7-43
System Requirements for Sound . 7-43
Listen to Sound . 7-43

View a Virtual World in Stereoscopic Vision . 7-45
Enable Stereoscopic Vision . 7-45
Control Stereoscopic Effects . 7-45

Active Stereoscopic Vision Configuration . 7-47
Computer Platforms . 7-47
Graphics Cards . 7-47
Display Devices . 7-47
Graphic Card Connection to Display Devices . 7-47
Examples of Stereoscopic Vision Setups . 7-48

Simulink 3D Animation Stand-Alone Viewer
8

Orbisnap Viewer . 8-2
What Is Orbisnap? . 8-2

Install Orbisnap . 8-3
Section Overview . 8-3
System Requirements . 8-3
Copying Orbisnap to Another Location . 8-3
Adding Shortcuts or Symbolic Links . 8-3

Start Orbisnap . 8-5

Orbisnap Interface . 8-6
Menu Bar . 8-7
Toolbar . 8-7
Navigation Panel . 8-8

Navigate Using Orbisnap . 8-9

View Animations or Virtual Worlds with Orbisnap 8-12

View Virtual Worlds Remotely with Orbisnap . 8-13

Blocks
9

Functions
10

xi

Getting Started

• “Simulink 3D Animation Product Description” on page 1-2
• “Expected Background” on page 1-3
• “Workflow for Building and Using Virtual Worlds” on page 1-4
• “MATLAB Compiler Support” on page 1-8
• “X3D Support” on page 1-9
• “Virtual Reality Modeling Language (VRML)” on page 1-11
• “Virtual Reality World and Dynamic System Examples” on page 1-16

1

Simulink 3D Animation Product Description
Visualize dynamic system behavior in a virtual reality environment

Simulink 3D Animation links Simulink models and MATLAB® algorithms to 3D graphics objects in
virtual reality scenes. You can animate a virtual world by changing position, rotation, scale, and other
object properties during desktop or real-time simulation. You can also sense collisions and other
events in the virtual world and feed them back into your MATLAB and Simulink algorithms. Video
from virtual cameras can be streamed to Simulink for processing.

Simulink 3D Animation includes editors and viewers for rendering and interacting with virtual
scenes. With the 3D World Editor, you can import CAD and URDF file formats as well as author
detailed scenes assembled from 3D objects. The 3D world can be viewed immersively using
stereoscopic vision. You can incorporate multiple 3D scene views inside MATLAB figures, and interact
with the virtual world using a force-feedback joystick, space mouse, or other hardware device.
Simulink 3D Animation supports X3D, an ISO standard file format and run-time architecture for
representing and communicating with 3D scenes and objects.

1 Getting Started

1-2

Expected Background
To help you effectively read and use this guide, here is a brief description of the chapters and a
suggested reading path. Generally, you can assume that Simulink 3D Animation software on the Apple
Mac OS X platform works as described for the UNIX®/Linux® platforms.

The documentation assumes that you are already familiar with:

• MATLAB product, to write scripts and functions with MATLAB code, and to use functions with the
command-line interface

• Simulink and Stateflow charts products to create models as block diagrams and simulate those
models

• X3D or VRML, to create or otherwise provide virtual worlds or three-dimensional scenes to
connect to Simulink or MATLAB software

See Also

Related Examples
• “Workflow for Building and Using Virtual Worlds” on page 1-4

More About
• “Simulink 3D Animation Product Description” on page 1-2

 Expected Background

1-3

Workflow for Building and Using Virtual Worlds
In this section...
“Virtual Reality World Models of Dynamic Systems” on page 1-4
“Set up Your Working Environment” on page 1-4
“Build a Virtual Reality World” on page 1-5
“Link to a Virtual Reality World” on page 1-6
“View Dynamic System Simulations” on page 1-7
“Share Dynamic System Simulation Visualizations” on page 1-7

Virtual Reality World Models of Dynamic Systems
The Simulink 3D Animation product is a solution for interacting with virtual reality world models of
dynamic systems over time. It extends the capabilities of your virtual world and Simulink, Simscape
Multibody, and MATLAB software into the world of virtual reality graphics. The product provides a
complete authoring, development, and working environment for carrying out 3-D visual simulations.

To use virtual reality worlds to visualize dynamic system simulations, perform the following tasks:

• “Set up Your Working Environment” on page 1-4
• “Build a Virtual Reality World” on page 1-5
• “Link to a Virtual Reality World” on page 1-6
• “View Dynamic System Simulations” on page 1-7
• “Share Dynamic System Simulation Visualizations” on page 1-7

As you refine your visualization, you often perform some of these tasks iteratively.

To work through an example that illustrates the building, linking, and viewing a virtual world, see
“Build and Connect a Virtual World” on page 5-8.

Set up Your Working Environment
Install the Simulink 3D Animation software in your MATLAB environment to build virtual reality
worlds and to visualize dynamic simulations modeled in MATLAB, Simulink, or Simscape Multibody. If
your computer does not already have a graphics card with hardware 3-D acceleration, consider
installing such a card to enhance graphics performance.

You build and view the virtual reality world models using VRML (Virtual Reality Modeling Language)
or X3D (Xtensible 3D).

In addition to the installed 3D World Editor (the default editor), you can configure your environment
to use:

• The Ligos® V-Realm Builder, which is included in the Simulink 3D Animation software for
Windows® platforms.

• Any third-party virtual world editor
• The MATLAB editor or a third-party text editor

1 Getting Started

1-4

In addition to the installed Simulink 3D Animation viewer (the default), you can use one of these
viewers to display your virtual reality worlds:

• Simulink 3D Animation Web Viewer
• Orbisnap, on a client computer

To help decide which 3D virtual world editor and viewer to use, see “Choose a Virtual World Editor”
on page 5-2 and “Virtual World Viewers” on page 7-2.

Use joystick and space mouse input devices to provide input for dynamic simulation visualizations.

TCP/IP Connection

The Simulink 3D Animation product uses a TCP/IP connection to a virtual reality world client for
communicating with the Simulink 3D Animation Viewer, as well as connecting to an HTML5-enabled
web browser. You can verify the TCP/IP connection between the host and client computers by using
the ping command from a command-line prompt. If there are problems, fix the TCP/IP protocol
settings according to the documentation for your operating system.

LD_LIBRARY_PATH Environment Variable for UNIX

If your system does not have the OpenGL® software properly installed when you run the Simulink 3D
Animation Viewer, you can see a MATLAB error message like the following:

Invalid MEX-file 'matlab/toolbox/sl3d/sl3d/vrsfunc.mexglx':
libGL.so: cannot open shared object file

If you see an error like this, set the LD_LIBRARY_PATH environment variable.

If the LD_LIBRARY_PATH environment variable already exists, use a line similar to this code to add
the new path to the existing one:

setenv LD_LIBRARY_PATH
matlabroot/sys/opengl/lib/<PLATFORM>:$LD_LIBRARY_PATH

If the LD_LIBRARY_PATH environment variable does not already exist, use a line similar to this code:

setenv LD_LIBRARY_PATH
matlabroot/sys/opengl/lib/<PLATFORM>

In both cases, <PLATFORM> is the UNIX platform you are using.

Build a Virtual Reality World
Use the virtual world editor or other editor to build a virtual reality world. A non-VRML or non-X3D
CAD model created with another tool can be a good basis for a virtual reality world to use with
Simulink 3D Animation. You can convert some CAD models to a VRML or X3D model.

You can use advanced features of the Simulink 3D Animation product such as:

• Viewpoints, to highlight points of interest for quick browsing of a virtual reality world
• Sensors, to input virtual reality world values to Simulink models

For an overview of VRML and details about supported VRML features, see “Virtual Reality Modeling
Language (VRML)” on page 1-11. You can also use X3D, which provides several extensions,

 Workflow for Building and Using Virtual Worlds

1-5

including additional nodes, fields, encoding, scene access interfaces, additional rendering control,
and geospatial support. For details, see “X3D Support” on page 1-9.

As you add nodes with the 3D World Editor on page 6-2, you can use the viewer pane to see the
virtual world that you are creating.

For a step-by-step example of building a virtual reality world with the 3D World Editor, see “Build and
Connect a Virtual World” on page 5-8.

Link to a Virtual Reality World
To use a dynamic system simulation to drive a virtual reality world, connect the virtual world to one
of these systems or objects:

• Simulink model
• Simscape Multibody model
• MATLAB virtual world object

Connect to Simulink Model

The Simulink 3D Animation library provides blocks to connect Simulink signals to virtual worlds. This
connection lets you visualize your model as a three-dimensional animation. Simulink provides
communication for control and manipulation of virtual reality objects, using Simulink 3D Animation
blocks. For details, see “Connect Virtual Worlds and Models” on page 3-2.

After you include these blocks in a Simulink diagram, you can select a virtual world and connect
Simulink signals to the virtual world. The software automatically scans a virtual world for available
nodes that the Simulink software can drive.

All the node properties are listed in a hierarchical tree-style viewer. You select the degrees of freedom
to control from within the Simulink interface. After you close a Block Parameters dialog box, the
Simulink software updates the block with the inputs and outputs corresponding to selected nodes in
the virtual world. After connecting these inputs to appropriate Simulink signals, you can view the
simulation with a virtual world viewer.

Connect to Simscape Multibody Model

You can use the Simulink 3D Animation product to view the behavior of a model created with the
Simscape Multibody software. First, build a model of a machine in the Simulink interface using
Simscape Multibody blocks. Then create a detailed picture of your machine in a virtual world.
Connect this world to the Simscape Multibody body sensor outputs and view the behavior of the
bodies in a virtual world viewer. For details, see “Link to Simulink and Simscape Multibody Models”
on page 5-60.

Connect to MATLAB Virtual World Object

Simulink 3D Animation software provides a flexible MATLAB interface to virtual reality worlds. After
creating MATLAB objects and associating them with a virtual world, you can control the virtual world
by using functions and methods. MATLAB provides communication for control and manipulation of
virtual reality objects using MATLAB objects. For details about interacting between MATLAB and
virtual reality worlds, see “Interact with Virtual Reality Worlds”.

1 Getting Started

1-6

In MATLAB, you can set positions and properties of virtual world objects, create callbacks from
graphical interfaces, and map data to virtual world objects. You can also view the virtual world with a
viewer, determine its structure, and assign new values to all available nodes and their fields.

The software includes functions for retrieving and changing the virtual world properties and for
saving the virtual world 3D files corresponding to the actual structure of a virtual world.

View Dynamic System Simulations
After you connect the virtual world to the model, use a virtual world viewer to view the virtual world
representation of the dynamic system simulation.

• In Simulink and Simscape Multibody, simulate the model that is connected to the virtual reality
world.

• In MATLAB, use the view function to view a vrworld object that the MATLAB code updates with
data values.

While running a simulation, you can change the positions and properties of virtual world objects.

For information about using virtual world viewers to navigate a virtual reality world, see “View
Dynamic System Simulations”.

Share Dynamic System Simulation Visualizations
You can share dynamic system simulation results with others.

• Capture animation frame snapshots or record animations for video viewing. See “Capture Frames”
on page 7-37 and “Share Visualizations”.

• Use a client-server configuration. In addition to the single computer configuration (when MATLAB,
Simulink, and the virtual reality representations run on the same host computer). In a client-
server configuration, an Orbisnap viewer on a remote client can connect to the server host on
which Simulink 3D Animation software is running. This configuration allows others to view an
animated virtual world remotely. Multiple clients can connect to one server. See “Orbisnap
Viewer” on page 8-2.

• Use the MATLAB Compiler™ to take MATLAB files as input and generate redistributable,
standalone applications that include Simulink 3D Animation functionality, including the Simulink
3D Animation Viewer. See “MATLAB Compiler Support” on page 1-8

See Also
Functions
vredit | vrlib | vrjoystick | vrspacemouse | vrgetpref | vrsetpref

Blocks
VR Sink | VR Source

Related Examples
• “Virtual Reality World and Dynamic System Examples” on page 1-16
• “Build Virtual Reality Worlds”

 Workflow for Building and Using Virtual Worlds

1-7

MATLAB Compiler Support
To use the MATLAB Compiler to produce standalone applications, create a MATLAB file that uses the
MATLAB interface for the Simulink 3D Animation product (for example, creating, opening, and
closing a vrworld object). Then use the MATLAB Compiler product.

Standalone applications that include Simulink 3D Animation functionality have the following
limitations:

• No Simulink software support, which results in no access to the Simulink 3D Animation Simulink
library (vrlib).

• No Simulink 3D Animation server, which results in no remote connection for the Orbisnap viewer
• No animation recording ability
• No editing world ability
• The following Simulink 3D Animation Viewer features cannot be used in standalone applications:

• File > Open in Editor
• Recording menu
• Simulation menu
• Help access

See Also

Related Examples
• “Interact with Virtual Reality Worlds”

1 Getting Started

1-8

X3D Support
In this section...
“X3D” on page 1-9
“Relationship of X3D and VRML” on page 1-9
“X3D Support in Simulink 3D Animation” on page 1-9
“Convert a VRML File to X3D Format” on page 1-10

X3D
The X3D (Xtensible 3D) ISO standard is an open standards file format and runtime architecture for
representing and communicating 3D scenes and objects. X3D has a rich set of componentized
features that you can customize. You can use X3D in applications such as engineering and scientific
visualization, CAD and architecture, medical visualization, training and simulation, multimedia,
entertainment, and education.

For information about supported X3D specification, see ISO/IEC 19775-1:2013. For information about
supported X3D encoding, see ISO/IEC 19776-1.3:201x and ISO/IEC 19776-2.3:201x.

Relationship of X3D and VRML
X3D is the successor of the VRML 97 standard (see “Virtual Reality Modeling Language (VRML)” on
page 1-11). X3D and VRML share many similar approaches, such as their coordinate systems and
the description of objects using nodes and their fields. X3D provides several extensions, including
additional nodes, fields, encoding, scene access interfaces, additional rendering control, and
geospatial support. VRML97 is still a widely supported 3D format for tools and viewers, and is a
direct subset of X3D. Many CAD tools and 3D editors support import from and export to the X3D
format.

Because many 3D virtual world tools and CAD tools have adopted X3D, Simulink 3D Animation
software provides both X3D and VRML support. VRML97 is the default virtual world file format.

X3D Support in Simulink 3D Animation
You can use XML encoded (.x3d files) and Classic VRML encoded (.x3dv files) X3D file formats. X3D
support is for versions from version 3.0 up to version 3.3. Support is for X3D files that contain
components that comply to the Immersive profile.

You can use Simulink blocks and MATLAB command-line interfaces to create and access virtual
worlds.

X3D Support Limitations

In the 3D World Editor, you can edit only VRML and VRML-compliant X3D files (files that contain only
X3D features that have VRML97 counterparts).

Simulink 3D Animation does not support X3D for Ligos V-Realm Builder.

The X3D support has these limitations:

 X3D Support

1-9

https://www.web3d.org/documents/specifications/19775-1/V3.3/
https://www.web3d.org/documents/specifications/19776-1/V3.3/index.html
https://www.web3d.org/documents/specifications/19776-2/V3.3/index.html

• No support for binary-encoded files (.x3db).
• The Simulink 3D Animation Web Viewer supports only X3D files that contain nodes complying to

the HTML profile specified by the X3DOM developer community.
• You can use the stl2vrml function to import CAD models in STL format (.stl files) to X3D

format (.x3d or .x3dv files). However, other methods that Simulink 3D Animation provides for
converting CAD models do not support conversion to X3D format.

• You cannot inline X3D files (.x3d or .x3dv).
• No support for the scene-access interface specified by ISO/IEC 19775-2:201x. To access virtual

worlds, use Simulink blocks or the MATLAB commands.
• LineProperties node support is limited to solid lines.
• The engine ignores UNIT and additional COMPONENT statements and elements.
• A PROTO node cannot have a VRML file (.wrl) that references an X3D file (.x3d or .x3dv).

Convert a VRML File to X3D Format
You can save VRML (.wrl) files as X3D format files. The conversion process determines whether the
X3D file is an .x3d or x3dv file.

This example code converts a VRML file to X3D format:

w = vrworld('octavia_scene.wrl');
open(w);

% save to XML encoding
save(w,'octavia_scene.x3d');

% save to VRML syntax encoding
save(w,'octavia_scene.x3dv');

See Also

Related Examples
• “Use CAD Models with the Simulink 3D Animation Product” on page 5-36
• “Workflow for Building and Using Virtual Worlds” on page 1-4
• “Virtual Reality World and Dynamic System Examples” on page 1-16

More About
• “Virtual Reality Modeling Language (VRML)” on page 1-11
• “Expected Background” on page 1-3

1 Getting Started

1-10

Virtual Reality Modeling Language (VRML)
In this section...
“Relationship of VRML and X3D” on page 1-11
“VRML” on page 1-11
“VRML Support” on page 1-11
“VRML Compatibility” on page 1-12
“Virtual World Coordinate System” on page 1-12
“VRML File Format” on page 1-13

Relationship of VRML and X3D
The X3D (Xtensible 3D) interface is the successor to the VRML (Virtual Reality Modeling Language)
interface. The X3D interface supports VRML features. X3D also provides several extensions to VRML.

For details, see “X3D Support” on page 1-9.

VRML
You can use the Virtual Reality Modeling Language (VRML) to display three-dimensional objects in a
VRML viewer. Simulink 3D Animation supports VRML97.

VRML provides an open and flexible platform for creating interactive three-dimensional scenes
(virtual worlds). Several VRML97-enabled browsers are available on several platforms. Also, you can
choose from several VRML authoring tools. In addition, graphical software packages (CAD, visual art,
and so on) offer VRML97 import/export features.

The Simulink 3D Animation product uses VRML97 technology for 3-D visualization.

VRML Support
The Virtual Reality Modeling Language (VRML) is an ISO standard that is open, text-based, and uses
a WWW-oriented format. You use VRML to define a virtual world that you can display with a virtual
world viewer and connect to a Simulink model.

The Simulink 3D Animation software uses many of the advanced features defined in the current
VRML97 specification. The standard is ISO/IEC 14772-1:1997, available from http://
www.web3d.org/documents/specifications/14772/V2.0/part1/javascript.html. This
format includes a description of 3-D scenes, sounds, internal actions, and WWW anchors.

The software analyzes the structure of the virtual world, determines what signals are available, and
makes them available from the MATLAB and Simulink environment.

Simulink 3D Animation software ensures that the changes made to a virtual world are reflected in the
MATLAB and Simulink interfaces. If you change the viewpoint in your virtual world, this change
occurs in the vrworld object properties in MATLAB and Simulink interfaces.

The software includes functions for retrieving and changing virtual world properties.

 Virtual Reality Modeling Language (VRML)

1-11

https://www.web3d.org/documents/specifications/14772/V2.0/part1/javascript.html
https://www.web3d.org/documents/specifications/14772/V2.0/part1/javascript.html

Note Some VRML worlds are automatically generated in VRML1.0. However, the Simulink 3D
Animation product does not support VRML1.0. Save these worlds in the current standard for VRML,
VRML97.

For PC platforms, you can convert VRML1.0 worlds to VRML97 worlds by opening the worlds in Ligos
V-Realm Builder and saving them. V-Realm Builder is shipped with the PC version of the software.
Other commercially available software programs can also perform the VRML1.0 to VRML97
conversion.

VRML Compatibility
The Simulink 3D Animation product currently supports most features of VRML97, with the following
limitations:

• The Simulink 3D Animation server ignores the VRML Script node, but it passes the node to the
VRML Viewer. Passing the node allows you to run VRML scripts on the viewer side. You cannot run
them on the Simulink 3D Animation server.

• In keeping with the VRML97 specification, the Simulink 3D Animation Viewer ignores BMP files.
As a result, VRML scene textures sometimes display improperly in the Simulink 3D Animation
Viewer. To display scene textures properly, replace all BMP texture files in a VRML scene with
PNG, JPG, or GIF equivalents.

For a complete list of VRML97 nodes, refer to the VRML97 specification.

Virtual World Coordinate System
Take coordinate systems into account when you want to:

• Display a virtual world object in a particular position.
• Move a virtual world.
• Export non-VRML models from CAD tools (including CATIA) and robot visual representations

(URDF files) to use with Simulink 3D Animation .
• Have a virtual world interact with MATLAB or Simulink.

The VRML coordinate system is different from the MATLAB and Aerospace Blockset™ coordinate
systems. VRML uses the world coordinate system: the y-axis points upward and the z-axis places
objects nearer or farther from the front of the screen. The larger the z-axis value, the closer the
object appears to the viewer. Understanding the coordinate system is important when you interact
with different coordinate systems. Simscape Multibody uses the same coordinate system as VRML.

1 Getting Started

1-12

Here are some key VRML coordinate system concepts:

• Rotation angles — In VRML, rotation angles are defined using the right-hand rule. Imagine your
right hand holding an axis while your thumb points in the direction of the axis toward its positive
end. Your four remaining fingers point in a counterclockwise direction. This counterclockwise
direction is the positive rotation angle of an object moving around that axis.

• Child objects — In the hierarchical structure of a VRML file, specify the position and orientation of
child objects relative to the parent object. The parent object has its local coordinate space defined
by its own position and orientation. Moving the parent object also moves the child objects relative
to the parent object.

• Measurement units — All lengths and distances are measured in meters, and all angles are
measured in radians.

Simulink 3D Animation provides a set of functions that can help you convert between different
representations of orientation in space. An example of a coordinate conversion function is
vrrotmat2vec, which converts a rotation from a matrix to an axis-angle representation.

For an example of using global coordinates in a Simulink 3D Animation model, see “Manipulator
Moving a Load with Use of Global Coordinates”.

VRML File Format
You need not have any substantial knowledge of the VRML format to use the VRML authoring tools to
create virtual worlds. However, a basic knowledge of VRML scene description helps you create virtual
worlds more effectively. A basic knowledge also gives you a good understanding of how you can
control the virtual world elements using Simulink 3D Animation software.

For more information, see the VRML97 Reference at https://www.web3d.org. Many specialized
VRML books can help you understand VRML concepts and create your own virtual worlds. For more
information about the VRML, refer to an appropriate third-party VRML book.

VRML uses a hierarchical tree structure of objects (nodes) to describe a 3-D scene. Every node in the
tree represents some functionality of the scene. There are many different types of nodes. Some of
them are shape nodes (representing real 3-D objects), and some of them are grouping nodes used for
holding child nodes. Here are some example nodes:

• Box — Represents a box in a scene.

 Virtual Reality Modeling Language (VRML)

1-13

https://www.web3d.org

• Transform — Defines position, scale, scale orientation, rotation, translation, and children of its
subtree (grouping node).

• Material — Corresponds to material in a scene.
• DirectionalLight— Represents lighting in a scene.
• Fog — Allows you to modify the environment optical properties.
• ProximitySensor — Brings interactivity to VRML97. This node generates events when you

enter, exit, and move within the defined region in space.

Each node contains a list of fields that hold values defining parameters for its function.

Nodes can be placed in the top level of a tree or as children of other nodes in the tree hierarchy.
When you change a value in the field of a certain node, all nodes in its subtree are affected. This
feature allows you to define relative positions inside complicated compound objects.

You can mark every node with a specific name by using the keyword DEF in the VRML scene code.
For example, the statement DEF MyNodeName Box sets the name for this box node to MyNodeName.
You can access the fields of only those nodes that you name in a virtual world.

In the following example of a simple VRML file, two graphical objects are modeled in a 3-D scene. A
flat box with a red ball above it represents the floor. The VRML file is a readable text file that you can
write in any text editor.

#VRML V2.0 utf8
This is a comment line
WorldInfo {
 title "Bouncing Ball"
}
Viewpoint {
 position 0 5 30
 description "Side View"
}
DEF Floor Box {
 size 6 0.2 6
}
DEF Ball Transform {
 translation 0 10 0
 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1 0 0
 }
 }
 geometry Sphere {
 }
 }
}

The first line is the VRML header line. Every VRML file must start with this header line. It indicates
that the file is a VRML 2 file and that the text objects in the file are encoded according to the UTF8
standard. You use the number sign (#) to comment VRML worlds. A VRML viewer ignores everything
on a line after the # sign is ignored, except for the first header line.

Most of the box properties are left at their default values – distance from the center of the coordinate
system, material, color, and so on. Only the name Floor and the dimensions are assigned to the box.
To be able to control the position and other properties of the ball, it is defined as a child node of a

1 Getting Started

1-14

Transform type node. Here, the default unit sphere is assigned a red color and a position 10 m above
the floor. In addition, the virtual world title is used by VRML viewers to distinguish between virtual
worlds. A suitable initial viewpoint is defined in the virtual world VRML file.

When displayed in a VRML viewer, you see the floor and red ball.

See Also

Related Examples
• “Workflow for Building and Using Virtual Worlds” on page 1-4
• “Virtual Reality World and Dynamic System Examples” on page 1-16
• “Add Sensors to Virtual Worlds” on page 5-20

More About
• “X3D Support” on page 1-9
• “Expected Background” on page 1-3

 Virtual Reality Modeling Language (VRML)

1-15

Virtual Reality World and Dynamic System Examples
In this section...
“Simulink Interface Examples” on page 1-16
“MATLAB Interface Examples” on page 1-25

Simulink Interface Examples
For all the examples that have a Simulink model, use the following procedure to run the example and
view the model:

1 In the MATLAB Command Window, enter the name of a Simulink model. For example, enter:

vrbounce

A Simulink window opens with the block diagram for the model. By default, a virtual world also
opens in the Simulink 3D Animation Viewer or your HTML5-enabled web browser. If you close
the virtual world window, double-click the VR Sink block to display it again.

Note If the viewer does not open, double-click the VR Sink block in the Simulink model. In the
Simulink 3D Animation Viewer, from the Simulation menu, click Block Parameters. A Block
Parameters dialog box opens. The Open viewer automatically check box should be selected by
default. When you double-click the VR Sink block, this selection enables the virtual world window
to open.

2 In the Simulink window, from the Simulation menu, click Run. (Alternatively, in the Simulink 3D
Animation Viewer, from the Simulation menu, click Start.)

A simulation starts running, and the virtual world is animated using signal data from the
simulation.

The following table lists the Simulink examples provided with the Simulink 3D Animation product.
Descriptions of the examples follow the table.

Example Simulink
Coder™ Ready

VR Sink VR
Source

Joystick Space
Mouse

sl3dex_rigidbodytree X
sl3dex_uav X X X
vrbounce X X
vrcrane_joystick X X
vrcrane_panel X X
vrcrane_traj X X
vrlights X X
vrmaglev X X
vrmaglev_sldrt X X
vrmanipul X X
vrmanipul_global X X

1 Getting Started

1-16

Example Simulink
Coder™ Ready

VR Sink VR
Source

Joystick Space
Mouse

vrmemb1 X X
vrmorph X X
vr_octavia X X
vr_octavia_2cars X
vr_octavia_graphs X
vr_octavia_mirror X
vr_octavia_video X
vrdemo_panel X X
vrpend X X
vrplanets X X
vrtkoff X X
vrtkoff_trace X
vrtkoff_hud X
vrcollisions X X
vrcollisions_lidar X X
vrmaze X X

UAV Competition Example (sl3dex_uav)

The sl3dex_uav example shows how virtual collision sensors can be used to interactively control the
simulation and to change the appearance of virtual world objects using Simulink® 3D Animation™.
The example represents a simple unmanned aerial vehicle (UAV) challenge.

The UAV competition scene is based on the IMAV Flight Competition held in 2013 in Toulouse,
France. (http://www.imav2013.org)

Rigid Body Tree Visualization (sl3dex_rigidbodytree)

The sl3dex_rigidbodytree example demonstrates the functionality of the Simulink 3D Animation
VR RigidBodyTree block. This example requires Robotics System Toolbox™

The VR RigidBodyTree block inserts visual representation of a Robotics System Toolbox
RigidBodyTree object in the virtual world and displays it in the virtual reality viewer. During
simulation, the rigid body tree is subsequently animated according to the configuration defined in the
Config input.

In this example, the manipulator configuration is provided by the Robotics System Toolbox Inverse
Kinematics block. You can use the sliders to change the robot end-effector position and orientation
about one axis.

Bouncing Ball Example (vrbounce)

The vrbounce example represents a ball bouncing from a floor. The ball deforms as it hits the floor,
keeping the volume of the ball constant. The deformation is achieved by modifying the scale field of
the ball.

 Virtual Reality World and Dynamic System Examples

1-17

http://www.imav2013.org/

Portal Crane with Joystick Control (vrcrane_joystick)

The vrcrane_joystick example illustrates how a Simulink model can interact with a virtual world.
The portal crane dynamics are modeled in the Simulink interface and visualized in virtual reality. The
model uses the Joystick Input block to control the setpoint. Joystick 3 axes control the setpoint
position and button 1 starts the crane. This example requires a standard joystick with at least three
independent axes connected to the PC.

To minimize the number of signals transferred between the Simulink model and the virtual reality
world, and to keep the model as simple and flexible as possible, only the minimum set of moving
objects properties are sent from the model to the VR Sink block. All other values that are necessary
to describe the virtual reality objects movement are computed from this minimum set using
VRMLScript in the associated virtual world 3D file.

For details on how the crane model hierarchy and scripting logic is implemented, see the associated
commented virtual world 3D file portal_crane.wrl.

Virtual Control Panel (vrdemo_panel)

The vrdemo_panel example shows the use of sensing objects that are available in the 3D World
Editor Components library. These objects combine virtual world sensors with logic that changes their
visual appearance based on user input. The sensor values can be read into Simulink by the VR Source
block. The logic is implemented using VRML Scripts and Routes.

The control panel contains a pushbutton, switch button, toggle switch, and a 2-D setpoint selection
area. Outputs of these elements are read into a Simulink model and subsequently displayed using
standard sinks, or used as inputs of blocks that control back some objects in the virtual world.

Pushbutton, switch button, and toggle switches have the state outputs, which are of boolean type.
Their values are displayed using the Scope.

Two outputs of the 2D setpoint area are used to achieve the following behavior. The value of the
"SetPoint_Changed" eventOut is continuously updated when the pointer is over the sensor area. This
value is triggered by the second output - "isActive" that is true only on clicking the pointer button.
Triggered value - coordinates of the active point on the sensor plane are displayed using the XY
Graph and sent back to the virtual world in two ways: as a position of green cone marker and as text
that the VR Text Output block displays on the control panel.

Portal Crane with Predefined Trajectory Example (vrcrane_traj)

The vrcrane_traj example is based on the vrcrane_joystick example, but instead of interactive
control, it has a predefined load trajectory. The vrcrane_traj model illustrates a technique to
create the visual impression of joining and splitting moving objects in the virtual world.

A crane magnet attaches the load box, moves it to a different location, then releases the box and
returns to the initial position. This effect is achieved using an additional, geometrically identical
shadow object that is placed as an independent object outside of the crane objects hierarchy. At any
given time, only one of the Load or Shadow objects is displayed, using two Switch nodes connected
by the ROUTE statement.

After the crane moves the load to a new position, at the time of the load release, a VRMLScript script
assigns the new shadow object position according to the current Load position. The Shadow object
becomes visible. Because it is independent from the rest of the crane moving parts hierarchy, it stays
at its position as the crane moves away.

1 Getting Started

1-18

Lighting Example (vrlights)

The vrlights example uses light sources. In the scene, you can move Sun (modeled as
DirectionalLight) and Lamp (modeled as PointLight) objects around the Simulink model. This
movement creates the illusion of changes between day and night, and night terrain illumination. The
associated virtual world 3D file defines several viewpoints that allow you to observe gradual changes
in light from various perspectives.

Magnetic Levitation Model Example (vrmaglev)

The vrmaglev example shows the interaction between dynamic models in the Simulink environment
and virtual worlds. The Simulink model represents the HUMUSOFT® CE 152 Magnetic Levitation
educational/presentation scale model. The plant model is controlled by a PID controller with feed-
forward to cope with the nonlinearity of the magnetic levitation system. To more easily observe and
control the ball, set the virtual world viewer to the Camera 3 viewpoint.

You can set the ball position setpoint in two ways:

• Using a Signal Generator block
• Clicking in the virtual reality scene at a position that you want

To achieve a dragging effect, use the PlaneSensor attached to the ball geometry with its output
restricted to <0,1> in the vertical coordinate and processed by the VR Sensor Reader block. The
vrextin S-function provides the data connection.

For more details on how to read values from virtual worlds programmatically, see “Add Sensors to
Virtual Worlds” on page 5-20.

Magnetic Levitation Model for Simulink Desktop Real-Time Example (vrmaglev_sldrt)

In addition to the vrmaglev example, the vrmaglev_sldrt example works directly with the actual
CE 152 scale model hardware in real time. This model to work with the HUMUSOFT MF 624 data
acquisition board, and Simulink Coder and Simulink Desktop Real-Time™ software. However, you can
adapt this model for other targets and acquisition boards. A digital IIR filter, from the DSP System
Toolbox™ library, filters the physical system output. You can bypass the physical system by using the
built-in plant model. Running this model in real time is an example showing the capabilities of the
Simulink product in control systems design and rapid prototyping.

After enabling the remote view in the VR Sink block dialog box, you can control the Simulink model
even from another (remote) client computer. This control can be useful for distributing the computing
power between a real-time Simulink model running on one machine and the rendering of a virtual
reality world on another machine.

To work with this model, use as powerful a machine as possible or split the computing and rendering
over two machines.

Manipulator with Space Mouse Example (vrmanipul)

The vrmanipul example illustrates the use of Simulink 3D Animation software for virtual reality
prototyping and testing the viability of designs before the implementation phase. Also, this example
illustrates the use of a space mouse input for manipulating objects in a virtual world. You must have a
space mouse input to run this example.

 Virtual Reality World and Dynamic System Examples

1-19

The virtual reality model represents a nuclear hot chamber manipulator. It is manipulated by a simple
Simulink model containing the Space Mouse Input block. This model uses all six degrees of freedom
of the space mouse for manipulating the mechanical arm, and uses mouse button 1 to close the grip
of the manipulator jaws.

A space mouse is an input device with six degrees of freedom. It is useful for navigating and
manipulating objects in a virtual world. A space mouse is also suitable as a general input device for
Simulink models. You can use a space mouse for higher performance applications and user comfort.
Space mouse input is supported through the Space Mouse Input block, which is included in the
Simulink 3D Animation block library for the Simulink environment.

The Space Mouse Input block can operate in three modes to cover the most typical uses of such a
device in a three-dimensional context:

• Speeds
• Positions
• Viewpoint coordinates

Manipulator Moving a Load with Use of Global Coordinates (vrmanipul_global)

The vrmanipul_global example illustrates the use of global coordinates in Simulink 3D Animation
models. You can use global coordinates in a model in many ways, including:

• Object tracking and manipulation
• Simple collision detection
• Simulation of haptic effects

The VR Source block supports using global coordinates for objects in a virtual world. For each
Transform in the scene, the tree view in the VR Source block parameter dialog box displays the
Extensions branch. In that branch, you can select translation_abs and rotation_abs fields.
Fields with the _abs suffix contain the object's global coordinates. The fields without the _abs suffix
input their data into Simulink model object's local coordinates (relative to their parent objects in
model hierarchy).

The virtual reality model represents a nuclear hot chamber manipulator. The manipulator moves the
load from one gray cylindrical platform to another. The trajectory for the manipulator end-effector is
predefined using the Signal Builder. Each part of manipulator arm is independently actuated using

1 Getting Started

1-20

decomposed trajectory components, with the help of VR Expander blocks (see the VR
Transformations subsystem).

The VR Source block in the virtual scene tree on the left captures global coordinates of all objects
important for load manipulation:

• Manipulator grip reference point (center of the clamp)
• Destination reference point
• Initial position of the load

The manipulator grip position results from complex movement of manipulator arm parts that form
hierarchical structure. Generally it is very difficult to compute global coordinates for such objects
affected by hierarchical relations in the scene. However, Simulink 3D Animation provides an easy way
to read the global coordinates of objects affected by hierarchical relations into a Simulink model.

Based on having the global coordinates of all of the important objects, you can implement a simple
manipulator control logic.

Rotating Membrane Example (vrmemb1)

The vrmemb1 example is similar to the vrmemb example, but in the vrmemb1 example the associated
virtual world is driven from a Simulink model.

Geometry Morphing Example (vrmorph)

The vrmorph example illustrates how you can transfer matrix-type or variable-size signal data
between the Simulink interface and a virtual reality world. With this capability, you can perform
massive color changes or morphing. This model morphs a cube into an octahedron and then changes
it back to a cube.

Vehicle Dynamics Visualization (vr_octavia)

The vr_octavia example illustrates the benefits of the visualization of complex dynamic model in
the virtual reality environment. It also shows the Simulink 3D Animation 3-D offline animation
recording functionality.

Vehicle Dynamics Visualization - Simulation of Multiple Objects (vr_octavia_2cars)

This example extends the vr_octavia example to show multiple-object scenario visualizations.

The precomputed simulation data represents a standard double-lane-change maneuver conducted in
two-vehicle configurations. One configuration engages the Electronic Stability Program control unit.
The other configuration switches that control unit off. The example sends two sets of vehicle
dynamics data in parallel to the virtual reality scene, to drive two different vehicles.

Models of the vehicles use the EXTERNPROTO mechanism. In the main virtual world associated with
the VR Sink block, you can create several identical vehicles as instances of a common 3-D object. This
approach greatly simplifies virtual world authoring. For instance, it is very easy to create a third
vehicle to simultaneously visualize another simulation scenario. The
octavia_scene_lchg_2cars.wrl virtual world, the code after the definition of PROTOS illustrates
an approach for easy-to-define reusable objects.

In addition to vehicle properties controlled in the vr_octavia example, vehicle prototypes also allow
you to define vehicle color and scale. These properties distinguish individual car instances (color) and

 Virtual Reality World and Dynamic System Examples

1-21

avoid unpleasant visual interaction of two nearly-aligned 3-D objects (scale). Scaling one of the cars
by a small amount, encompasses one car into another so that their faces do not clip randomly, based
on the current simulation data in each simulation step.

To visualize vehicles side-by-side, add an offset to the position of one vehicle.

Vehicle Dynamics Visualization with Graphs (vr_octavia_graphs)

The vr_octavia_graphs example extends the vr_octavia example by showing how to combine a
virtual reality canvas in one figure with other graphical user interface objects. In this case, the virtual
world displays three graphs that update at each major simulation time step.

Vehicle Dynamics Visualization with Live Rear Mirror Image (vr_octavia_mirror)

The vr_octavia_mirror example extends the vr_octavia example by showing the capability of
the VR Sink block to process video stream on input. In the virtual world, a PixelTexture texture
map is defined at the point of the vehicle left rear mirror. The example places a 2-D image from a
viewpoint at the same position (looking backward). That image is looped back into the same virtual
world and projected on the rear mirror glass, creating the impression of a live reflection. Texture
images can have different formats (corresponding to the available SFImage definitions according to
the VRML97 standard). This example uses an RGB image that has the same format as the output from
the VR to Video block. In the virtual world 3D file associated with the scene, you can define only a
trivial texture (in this case, a 4x4 pixel checkerboard) that gets resized during simulation, according
to the current size of the signal on the input. See the Plane Manipulation Using Space Mouse
MATLAB Object example.

Vehicle Dynamics Visualization with Video Output Example (vr_octavia_video)

The vr_octavia_video example illustrates how to use video output from the VR To Video block.
This model performs simple operations on the video output. It requires the Computer Vision
Toolbox™ product.

Inverted Pendulum Example (vrpend)

The vrpend example illustrates the various ways a dynamic model in the Simulink interface can
interact with a virtual reality scene. It is the model of a two-dimensional inverted pendulum
controlled by a PID controller. What distinguishes this model from common inverted pendulum
models are the methods for setting the set point. You visualize and interact with a virtual world by
using a Trajectory Graph and VR Sink blocks. The Trajectory Graph block allows you to track the
history of the pendulum position and change the set point in three ways:

• Mouse — Click and drag a mouse pointer in the Trajectory Graph two-dimensional window
• Input Signal — External Trajectory Graph input in this model (driven by a random number

generator)
• VR Sensor — Activates the input from a VRML TouchSensor

When the pointing device in the virtual world viewer moves over an active TouchSensor area, the
cursor shape changes. The triggering logic in this model is set to apply the new set point value with a
left mouse button click.

Notice the pseudoorthographic view defined in the associated virtual world 3D file. You achieve this
effect by creating a viewpoint that is located far from the object of interest with a very narrow view
defined by the FieldOfView parameter. An orthographic view is useful for eliminating the
panoramic distortion that occurs when you are using a wide-angle lens. The disadvantage of this

1 Getting Started

1-22

technique is that locating the viewpoint at a distance makes the standard viewer navigation tricky or
difficult in some navigation modes, such as the Examine mode. If you want to navigate around the
virtual pendulum bench, you should use some other viewpoint.

Solar System Example (vrplanets)

The vrplanets example shows the dynamic representation of the first four planets of the solar
system, Moon orbiting around Earth, and Sun itself. The model uses the real properties of the
celestial bodies. Only the relative planet sizes and the distance between the Earth and the Moon are
adjusted, to provide an interesting view.

Several viewpoints are defined in the virtual world, both static and attached to an observer on Earth.
You can see that the planet bodies are not represented as perfect spheres. Using the Sphere graphic
primitive, which is rendered this way, simplified the model. If you want to make the planets more
realistic, you could use the more complex IndexedFaceSet node type.

Mutual gravity accelerations of the bodies are computed using Simulink matrix-type data support.

Plane Takeoff Example (vrtkoff)

The vrtkoff example represents a simplified aircraft taking off from a runway. Several viewpoints
are defined in this model, both static and attached to the plane, allowing you to see the takeoff from
various perspectives.

The model shows the technique of combining several objects imported or obtained from different
sources (CAD packages, general 3-D modelers, and so on) into a virtual reality scene. Usually it is
necessary for you to wrap such imported objects with an additional Transform node. This wrapper
allows you to set appropriately the scaling, position, and orientation of the objects to fit in the scene.
In this example, the aircraft model from the Ligos V-Realm Builder Object Library is incorporated into
the scene. The file vrtkoff2.wrl uses the same scene with a different type of aircraft.

Plane Take-Off with Trajectory Tracing Example (vrtkoff_trace)

The vrtkoff_trace is a variant of the vrtkoff example that illustrates how to trace the trajectory
of a moving object (plane) in a scene. It uses a VR Tracer block. Using a predefined sample time, this
block allows you to place markers at the current position of an object. When the simulation stops, the
markers indicate the trajectory path of the object. This example uses an octahedron as a marker.

Plane Take-Off with HUD Text Example (vrtkoff_hud)

The vrtkoff_hud example illustrates how to display signal values as text in the virtual world and a
simple Head-Up Display (HUD). It is a variant of the vrtkoff example.

The example sends the text to a virtual world using the VR Text Output block. This block formats the
input vector using the format string defined in its mask (see sprintf for more information) and
sends the resulting string to the 'string' field of the associated Text node in the scene.

The example achieves HUD behavior (maintaining constant relative position between the user and
the Text node) by defining a ProximitySensor. This sensor senses user position and orientation as
it navigates through the scene and routes this information to the translation and rotation of the HUD
object (in this case, a Transform that contains the Text node).

Collision Detection Using Line Sensor (vrcollisions)

The vrcollisions example shows a simple way how to implement collision detection.

 Virtual Reality World and Dynamic System Examples

1-23

In the virtual world, an X3D LinePickSensor is defined. This sensor detects approximate collisions
of several rays (modeled as IndexedLineSet) with arbitrary geometries in the scene. For geometric
primitives, exact collisions are detected. One of LinePickSensor output fields is the\\ field, which
becomes TRUE as soon as the collision between any of the rays and surrounding scene objects is
detected.

The robot is inside a room with several obstacles. During the simulation, the robot moves forward as
long as its sensor does not bounce into a wall or an obstacle. Use the Left and Right buttons to turn
the robot so that there is a free path ahead, and the robot starts moving again.

The model defines both VR Sink and VR Source blocks, associated with the same virtual scene. The
VR Source reads the sensor isActive signal and the current position of the robot. The VR Sink block
sets the robot position, rotation, and color.

In the virtual world, there are two viewpoints defined - one static and one attached to the robot.

Differential Wheeled Robot with Lidar Sensor (vrcollisions_lidar)

The vrcollisions_lidar example shows how a LinePickSensor can be used to model lidar
sensor behavior in Simulink 3D Animation.

In a simple virtual world, a wheeled robot with a lidar sensor mounted on its top is defined. This lidar
sensor is implemented using the LinePickSensor that detects collisions of several rays (modeled as
IndexedLineSet) with surrounding scene objects. Sensor pickedRange and pickedPoint fields
are used in this model for visualization purposes only, but together with robot pose information they
can be used for Simultaneous Localization and Mapping (SLAM) and other similar purposes.

The sensor sensing lines are visible, shown as transparent green lines. There are 51 sensing rays
evenly spaced in the horizontal plane between -90 and 90 degrees. lidar range is 10 meters.

In order to visualize the lidar sensor output, there is a visualization proxy LineSet defined with lines
identical to lines defined as the LinePickSensor sensing geometry. Visualization lines are blue.
Combination of pickedPoint and pickedRange LinePickSensor outputs is used to visualize
points of collision. The pickedPoint output contains coordinates of points that collided with
surrounding objects. This output has variable size depending on how many sensor rays collided. The
pickedRange output size is fixed, equal to the number of sensing rays. The output returns distance
from lidar sensor origin to collision point for each sensing line. For rays that don't collide, this output
returns -1. The pickedRange is used to determine the indices of lines for which the collision points
are returned in the pickedPoint sensor output. In effect, the blue lines are shortened so that only
the line segment between the ray fan origin and point of collision is displayed for each line.

Robot trajectory is modeled in a trivial way using the Signal Builder and the Ramp blocks. In the
Signal Builder, a simple 1x1 meter square trajectory is defined for the first 40 seconds of simulation.
After returning to its original position, the robot only rotates indefinitely.

In the model, there are both VR Sink and VR Source blocks defined, associated with the same virtual
world. The VR Source is used to read the sensor signals. The VR Sink is used to set the Robot
position / rotation and the coordinates of endpoints of the sensor visual proxy lines.

In the virtual world, there are several viewpoints defined, both static and attached to the robot,
allowing to observe lidar visualization from different perspectives.

1 Getting Started

1-24

Differential Wheeled Robot in a Maze (vrmaze)

The vrmaze example shows how you can use collision detection to simulate a differential wheeled
robot that solves a maze challenge. The robot control algorithm uses information from virtual
ultrasonic sensors that sense distance to surrounding objects.

A simple differential wheeled robot is equipped with two virtual ultrasonic sensors.One of the sensors
looks ahead, and the other is directed to the left of the robot. Sensors are simplified, their active
range is represented by green lines. The sensors are implemented as X3D LinePickSensor nodes.
These sensors detect approximate collisions of rays (modeled as IndexedLineSet) with arbitrary
geometries in the scene. For geometric primitives, exact collisions are detected. One of the
LinePickSensor output fields is the isActive field, which becomes TRUE as soon as the collision
between its ray and surrounding scene objects is detected. When activated, the sensor lines change
their color from green to red using the script written directly in the virtual world.

In the model, there are both VR Sink and VR Source blocks defined, associated with the same virtual
scene. The VR Source reads the sensors isActive signals. The VR Sink sets the robot position and
rotation in the virtual world.

The robot control algorithm is implemented using a Stateflow® chart.

MATLAB Interface Examples
The following table lists the MATLAB interface examples provided with the software. Descriptions of
the examples follow the table. MATLAB interface examples display virtual worlds in your default
viewer. If your default is the Simulink 3D Animation Viewer, some buttons are unavailable. In
particular, the simulation buttons for simulation and recording are unavailable.

Example Moving
Objects

Morphing
Objects

Text Recording vrml()
Function
Use

Space
Mouse

vrcar X
vrheat X X
vrheat_anim X X X
vrmemb X X X
vrterrain_simple X
vrtkoff_spacemouse X X

Car in the Mountains Example (vrcar)

This example illustrates the use of the Simulink 3D Animation product with the MATLAB interface. In
a step-by-step tutorial, it shows commands for navigating a virtual car along a path through the
mountains.

1 In the MATLAB Command Window, type

vrcar

2 A tutorial script starts running. Follow the instructions in the MATLAB Command Window.

 Virtual Reality World and Dynamic System Examples

1-25

Heat Transfer Example (vrheat)

This example illustrates the use of the Simulink 3D Animation product with the MATLAB interface for
manipulating complex objects.

In this example, matrix-type data is transferred between the MATLAB software and a virtual reality
world. Using this feature, you can achieve massive color changes or morphing. This is useful for
representing various physical processes. Precalculated data of time-based temperature distribution in
an L-shaped metal block is used. The data is then sent to the virtual world. This forms an animation
with relatively large changes.

This is a step-by-step example. Shown are the following features:

• Reshaping the object
• Applying the color palette to represent distributed parameters across an object shape
• Working with VRML or X3D text objects
• Animating a scene using the MATLAB interface
• Synchronization of multiple scene properties

At the end of this example, you can preserve the virtual world object in the MATLAB workspace, then
save the resulting scene to a corresponding virtual world 3D file or carry out other subsequent
operations on it.

Heat Transfer Visualization with 2-D Animation (vrheat_anim)

This example illustrates the use of the Simulink 3D Animation C interface to create 2-D offline
animation files.

You can control the offline animation recording mechanism by setting the relevant vrworld and
vrfigure object properties. You should use the Simulink 3D Animation Viewer to record animations.
However, direct control of the recording is also possible.

This example uses the heat distribution data from the vrheat example to create an animation file.
You can later distribute this animation file to be independently viewed by others. For this kind of
visualization, where the static geometry represented by an IndexedFaceSet node is colored based
on the simulation of some physical phenomenon, it is suitable to create 2-D .avi animation files. The
software uses a MATLAB VideoWriter object to record 2-D animation exactly as it appears in the
viewer figure.

There are several methods you can use to record animations. In this example, we use the scheduled
recording. When scheduled recording is active, a time frame is recorded into the animation file with
each setting of the virtual world Time property. Recording is completed when you set the scene time
at the end or outside the predefined recording interval.

When using the Simulink 3D Animation MATLAB interface, you set the scene time as desired. This is
typically from the point of view of the simulated phenomenon equidistant times. This is the most
important difference from recording the animations for virtual worlds that are associated with
Simulink models, where scene time corresponds directly to the Simulink time.

The scene time can represent any independent quantity along which you want to animate the
computed solution.

This is a step-by-step example. Shown are the following features:

1 Getting Started

1-26

• Recording 2-D offline animations using the MATLAB interface
• Applying the color palette to visualize distributed parameters across an object shape
• Animating a scene
• Playing the created 2-D animation file using the system AVI player

At the end of this example, the resulting file vrheat_anim.avi remains in the working folder for
later use.

Rotating Membrane with MATLAB Graphical Interface Example (vrmemb)

The vrmemb example shows how to use a 3-D graphic object generated from the MATLAB
environment with the Simulink 3D Animation product. The membrane was generated by the logo
function and saved in the VRML format using the standard vrml function. You can save all Handle
Graphics® objects this way and use them with the Simulink 3D Animation software as components of
associated virtual worlds.

After starting the example, you see a control panel with two sliders and three check boxes. Use the
sliders to rotate and zoom the membrane while you use the check boxes to determine the axis to
rotate around.

In the virtual scene, notice the text object. It is a child of the Billboard node. You can configure this
node so that its local z-axis turns to point to the viewer at all times. This can be useful for modeling
virtual control panels and head-up displays (HUDs).

Terrain Visualization Example (vrterrain_simple)

This example illustrates converting available Digital Elevation Models into the VRML format, for use
in virtual reality scenes.

As a source of terrain data, the South San Francisco DEM model (included in the Mapping Toolbox™
software) has been used. A simple Boeing® 747® model is included in the scene to show the
technique of creating virtual worlds from several sources on-the-fly.

This example requires the Mapping Toolbox software from MathWorks®.

Plane Manipulation Using Space Mouse MATLAB Object

This example illustrates how to use a space mouse using the MATLAB interface. After you start this
example, a virtual world with an aircraft is displayed in the Simulink 3D Animation Viewer. You can
navigate the plane in the scene using a space mouse input device. Press button 1 to place a marker at
the current plane position.

This example requires a space mouse or compatible device.

See Also

Related Examples
• “Link to Models”

 Virtual Reality World and Dynamic System Examples

1-27

Installation

The Simulink 3D Animation product provides the files you need for installation on both your host
computer and client computer.

• “Set the Default Viewer” on page 2-2
• “Set Simulink 3D Animation Preferences” on page 2-5
• “Install V-Realm Editor” on page 2-14
• “Test the Viewer Installation” on page 2-16

2

Set the Default Viewer
If you have an HTML5-enabled web browser, you can view virtual worlds with either the default
Simulink 3D Animation Viewer or your web browser. You determine the viewer for displaying your
scene using the vrsetpref and vrgetpref commands.

This procedure assumes that you are working with a PC platform.

1 When you install Simulink 3D Animation, the Simulink 3D Animation viewer is the default viewer.
If you are not sure whether the default has been changed, you can determine your default viewer
by typing:

vrgetpref

The MATLAB Command Window displays

ans =

 DataTypeBool: 'logical'
 DataTypeInt32: 'double'
 DataTypeFloat: 'double'
 DefaultCanvasNavPanel: 'opaque'
 DefaultCanvasUnits: 'normalized'
 DefaultEditorPosition: [822 123 661 703]
 DefaultEditorTriad: 'bottomleft'
 DefaultFigureAntialiasing: 'on'
 DefaultFigureCaptureFileFormat: 'tif'
 DefaultFigureCaptureFileName: '%f_anim_%n.tif'
 DefaultFigureDeleteFcn: ''
 DefaultFigureLighting: 'on'
 DefaultFigureMaxTextureSize: 'auto'
 DefaultFigureNavPanel: 'halfbar'
 DefaultFigureNavZones: 'off'
 DefaultFigurePosition: [5 92 576 380]
 DefaultFigureRecord2DCompressMethod: 'auto'
 DefaultFigureRecord2DCompressQuality: 75
 DefaultFigureRecord2DFileName: '%f_anim_%n.avi'
 DefaultFigureRecord2DFPS: 15
 DefaultFigureStatusBar: 'on'
 DefaultFigureTextures: 'on'
 DefaultFigureToolBar: 'on'
 DefaultFigureTooltips: 'on'
 DefaultFigureTransparency: 'on'
 DefaultFigureTriad: 'none'
 DefaultFigureWireframe: 'off'
 DefaultViewer: 'internal'
 DefaultWorldRecord3DFileName: '%f_anim_%n.%e'
 DefaultWorldRecordMode: 'manual'
 DefaultWorldRecordInterval: [0 0]
 DefaultWorldRemoteView: 'off'
 DefaultWorldTimeSource: 'external'
 Editor: '*BUILTIN'
 EditorPreserveLayout: 'off'
 EditorSavePosition: 'on'
 HttpPort: 8123
 TransportBuffer: 5
 TransportTimeout: 20
 VrPort: 8124

2 Installation

2-2

The DefaultViewer property is set to 'internal'. The Simulink 3D Animation Viewer is the
default viewer for viewing virtual worlds. Any virtual worlds that you open are displayed in the
viewer.

1 For example, at the MATLAB command prompt, type

vrplanets

The Planets example is loaded and the virtual world is displayed in the Simulink 3D Animation
Viewer.

2 To view the virtual world through the web browser, from the MATLAB command prompt, use the
view and vrview commands.

3 Reset the Simulink 3D Animation Viewer as your default viewer by typing:

vrsetpref('DefaultViewer','factory')

Alternatively, you can use the MATLAB File menu Preferences dialog box. See “Set Simulink 3D
Animation Preferences” on page 2-5.)

See Also
Functions
vrgetpref | vrsetpref

 Set the Default Viewer

2-3

Related Examples
• “Set Simulink 3D Animation Preferences” on page 2-5
• “Install V-Realm Editor” on page 2-14
• “Test the Viewer Installation” on page 2-16
• “Simulink 3D Animation Product Description” on page 1-2
• “Set the Default Editor” on page 5-5

2 Installation

2-4

Set Simulink 3D Animation Preferences
In this section...
“Simulink 3D Animation Preferences Dialog Box” on page 2-6
“3D World Editor Preferences Dialog Box” on page 2-7
“Canvas Preferences Dialog Box” on page 2-8
“Figure Appearance Preferences Dialog Box” on page 2-8
“Figure Rendering Preferences Dialog Box” on page 2-9
“Figure 2-D Recording Preferences Dialog Box” on page 2-11
“Figure Frame Capture Preferences” on page 2-11
“World Preferences Dialog Box” on page 2-12

The Simulink 3D Animation software opens with default preference settings. You can change these
settings so that the next time you open a Simulink 3D Animation interface, such as the 3D World
Editor, the associated preferences take effect. Use one of these approaches:

• From the MATLAB Toolstrip, in the Home tab, in the Environment section, select Preferences >
Simulink 3D Animation.

• At the MATLAB command line, use these functions:

Tip The preferences dialog box shows a subset of the preferences that you can set using MATLAB
functions.

 Set Simulink 3D Animation Preferences

2-5

Simulink 3D Animation Preferences Dialog Box
The top dialog box is for general Simulink 3D Animation preferences.

Preference Value Description
Default Viewer internal | web

Default: 'internal'

Specifies which viewer is used to view a virtual world.
The default Simulink 3D Animation Viewer is used when
the preference is set to internal. The web browser is
used when this preference is set to web.

Default Editor Built-in 3D World
Editor | V-Realm
Builder | MATLAB
Editor | Custom

Specifies which virtual world editor to use. Path to the
virtual world editor. If this path is empty, the MATLAB
editor is used.

The path setting is active only if you select the Custom
option.

To open a virtual world file in a third-party editor, do not
use the vredit command. For example, to open a virtual
world in the Ligos V-Realm Builder editor:

1 Set the default editor to V-Realm Builder. In
MATLAB, enter:

vrsetpref('Editor','*VREALM');
2 To open a file in the V-Realm editor, in MATLAB

navigate to a virtual world file, right-click, and select
Edit.

Note The vredit command opens the 3D World
Editor, regardless of the default editor preference
setting.

Bool logical | char

Default: logical

Specifies the handling of the virtual world Bool data
type for vrnode/setfield and vrnode/getfield. If
set to logical, the virtual world Bool data type is
returned as a logical value. If set to char, the Bool data
type is returned 'on' or 'off'.

Int32 int32 | double

Default: double

Specifies handling of the virtual world Int32 data type
for vrnode/setfield and vrnode/getfield. If set to
int32, the virtual world Int32 data type is returned as
'int32'. If set to double, the Int32 data type is
returned as 'double'.

Float 'single' | 'double'

Default: 'double'

Specifies the handling of the virtual world float data
type for vrnode/setfield and vrnode/getfield. If
set to single, the virtual world Float and Color data
types are returned as 'single'. If set to double, the
Float and Color data types are returned as 'double'.

2 Installation

2-6

Preference Value Description
HTTP Port Numeric

Default: 8123

IP port number used to access the Simulink 3D
Animation server over the web via HTTP. If you change
this preference, restart the MATLAB software before the
change takes effect.

VR Port Numeric

Default: 8124

IP port used for communication between the Simulink 3D
Animation server and its clients. If you change this
preference, restart the MATLAB software before the
change takes effect.

Transport Buffer Numeric

Default: 5

Length of the transport buffer (network packet overlay)
for communication between the Simulink 3D Animation
server and its clients.

Transport Timeout Numeric

Default: 20

Amount of time, in seconds, that the Simulink 3D
Animation server waits for a reply from the client. If
there is no response from the client, the Simulink 3D
Animation server disconnects from the client.

3D World Editor Preferences Dialog Box
The Simulink 3D Animation preferences include the following preferences for the 3D World Editor.

Property Value Description
Position Specify the pixel location for the lower-

left corner, the width, and the height
(for example, [96 120 862 960]

Default: Depends on current screen
resolution

Specifies the default location for the
3D World Editor. If you select Save
position on exit, the default position
changes to the position of the 3D World
Editor used when you last exited it.

Triad none| top left | top right |
bottom left | bottom right |
center

Default: 'bottom left'

Specifies where in the virtual world
display pane to locate a triad of
coordinate axes.

View pane mouse behavior navigate | select

Default: navigate

Specifies whether the mouse in the
view pane is in navigation mode or
selection mode (for highlighting
corresponding nodes in the tree view
pane).

Save position on exit off | on

Default: on

Causes the 3D World Editor to open in
the same location where the editor was
when you last exited it.

 Set Simulink 3D Animation Preferences

2-7

Property Value Description
Preserve Layout per Virtual
Reality 3D File

off | on

Default: on

Specifies whether the 3D World Editor
starts up either with the default virtual
world display layout or with the layout
as it was when you exited it previously.
The saved layout includes settings for
the view, viewpoints, navigation, and
rendering. Simulink 3D Animation
saves the layout in a separate virtual
world 3D file for up to eight files.

Highlight selected objects off | on

Default: on

Specifies whether to highlight virtual
world objects selected in the view
pane.

Canvas Preferences Dialog Box
The Simulink 3D Animation preferences include a Navigation panel preference. The canvas
preferences apply to the 3D World Editor, Simulink 3D Animation Viewer, and Simulink 3D Animation
Web Viewer.

Property Value Description
Navigation panel none | minimized |translucent |

opaque

Default: none

Controls the appearance of the
navigation panel in the canvas.

Figure Appearance Preferences Dialog Box
The figure appearance preferences apply to the 3D World Editor and Simulink 3D Animation Viewer.
Some of these preferences also apply to Simulink 3D Animation Web Viewer.

Property Value Description
Toolbar on | off

Default: on

Specifies whether the toolbar is
displayed.

Tooltips off | on

Default: on

Specifies whether tooltips are
displayed.

Status bar off | on

Default: on

Specifies whether status bar is
displayed.

Also applies to the Simulink 3D
Animation Web Viewer.

Navigation zones off | on

Default: on

Specifies whether navigation zones
are displayed.

Also applies to the Simulink 3D
Animation Web Viewer.

2 Installation

2-8

Property Value Description
Navigation panel none | minimized |translucent |

opaque

Default: none

Controls the appearance of the
navigation panel in the canvas.

Triad none | top left | top right
| bottom left | bottom
right | center

Default: bottom left

Specifies where in the virtual world
display pane to locate a triad of
coordinate axes.

Position Matrix with upper-right and lower-
left corner position.

Default: [5 92 576 380]

Specifies the default location of the
figure window.

Figure Rendering Preferences Dialog Box
The figure rendering preferences specify how virtual worlds are displayed.

Property Value Description
Antialiasing on | off

Default: on

Determines whether antialiasing is
used when rendering scene.
Antialiasing smooths textures by
interpolating values between
texture points.

Lighting off | on

Default: on

Specifies whether the lighting is
considered when rendering. If it is
off, all the objects are drawn as if
uniformly lit.

Sound off | on

Default: on

If a virtual world contains a Sound
node and your computer supports
sound, then you can listen to the
sound in a virtual world.

 Set Simulink 3D Animation Preferences

2-9

Property Value Description
Stereo 3D off | anaglyphactive

Default: off

Specifies whether to use
stereoscopic 3D vision.

For anaglyph viewing, use red/cyan
3D glasses. Viewing a virtual world
in this mode causes the colors to
appear as almost grayscale. This
approach does not require any
special computer hardware or
software.

For active stereo viewing, use active
shutter 3D glasses. This approach
preserves color effects and
produces more powerful 3D effects.
Active stereo requires a specially
configured computer and monitor
setup.

Stereo 3D Camera Offset Numeric

Default: 0.1

Specifies the distance between the
two points of view (cameras) that
produce the 3D effect. The higher
the offset, the further apart the
cameras are, and thus the deeper
the 3D effect.

Stereo 3D Horizontal Image
Translation

Numeric value from 0 through 1,
inclusive. The larger the value, the
further back the background
appears to be.

Default: 0

The horizontal relationship of the
two stereo images. By default, the
background image is at zero and the
foreground image appears to pop
out from the monitor toward the
person viewing the virtual world.

Transparency off | on

Default: on

Specifies whether transparency
information is considered when
rendering.

Wireframe off | on

Default: off

Specifies whether objects are drawn
as solids or wireframes.

Textures off | 'on'

Default: on

Turns texture rendering on or off.

2 Installation

2-10

Property Value Description
Maximum texture size auto | 32 <= x <= video card

limit, where x is a power of 2 (video
card limit is typically 1024 or 2048)

Sets the maximum pixel size of a
texture used in rendering
vrfigure objects. The smaller the
size, the faster the texture can
render. Increasing this value
improves image quality but
decreases performance. A value of
'auto' sets the maximum pixel
size. If the value you enter is
unsuitable, a warning can trigger.
The software then automatically
adjusts the property to the next
smaller suitable value.

Figure 2-D Recording Preferences Dialog Box
Property Value Description
2-D animated file name Character vector

Default: '%f_anim_%n.avi'

Specifies the 2-D offline animation
file name. The name can contain
tokens that are replaced by the
corresponding information when the
animation recording takes place.
For further details, see “File Name
Tokens” on page 4-14.

Recording compression method '' | auto | lossless |
codec_code

Default: auto

Specifies the compression method
for creating 2-D animation files. The
codec code must be registered in
the system. See the MATLAB
documentation for VideoWriter.

Recording compression quality Integer 0–100.

Default: 75

Specifies the default quality of 2-D
animation file compression for new
vrfigure objects.

Frames per second Numeric

Default: 15

Specifies the default frames per
second playback speed.

Figure Frame Capture Preferences
Property Value Description
CaptureFileFormat tif | png

Default: tif

Specifies file format for a captured
frame file.

 Set Simulink 3D Animation Preferences

2-11

Property Value Description
CaptureFileName Character vector

Default: '%f_anim_%n.tif'

Specifies the frame capture file
name. The name can contain tokens
that are replaced by the
corresponding information when the
animation recording takes place.
For further details, see “Define File
Name Tokens” on page 4-12.

World Preferences Dialog Box
Property Value Description
3-D animated file name character vector

Default: '%f_anim_%n.%e'

3-D animation file name. The name
can contain tokens that are
replaced by the corresponding
information when the animation
recording takes place. For details,
see “Define File Name Tokens” on
page 4-12.

Recording mode manual | scheduled

Default: manual

Animation recording mode.

Recording interval Vector of two doubles

Default: [0 0]

Start and stop times for scheduled
animation recording. Corresponds
to the virtual world object Time
property.

Time source external | freerun

Default: external

Source of the time for the virtual
world. If set to external, time in
the scene is controlled from the
MATLAB software (by setting the
Time property) or the Simulink
software (simulation time). If set to
freerun, time in the scene
advances independently based on
the system timer.

Allowing viewing from the
Internet

off | on

Default: off

Remote access flag. If the virtual
world is enabled for remote
viewing, it is set to on; otherwise, it
is set to off.

Create or update world
thumbnail file when world is
opened

off | on

Default: off

Specify whether create world
thumbnails when you open a virtual
world.

See Also
Functions
vrgetpref | vrsetpref

2 Installation

2-12

Related Examples
• “Set the Default Editor” on page 5-5
• “Set the Default Viewer” on page 2-2

 Set Simulink 3D Animation Preferences

2-13

Install V-Realm Editor

In this section...
“V-Realm Editor Installation on Windows Platforms” on page 2-14
“V-Realm Builder Help” on page 2-15
“Uninstall V-Realm Builder” on page 2-15

Tip The Simulink 3D Animation product includes the 3D World Editor for editing virtual worlds. You
can use the 3D World Editor on all supported platforms for Simulink 3D Animation. The 3D World
Editor is the default editor. For a comparison of editors, see “Choose a Virtual World Editor” on page
5-2.

V-Realm Editor Installation on Windows Platforms
When you install the Simulink 3D Animation product, files are copied to your hard drive for the Ligos
V-Realm Builder, which is an optional virtual world editor available on Windows platforms. However,
the installation is not complete.

Installing the virtual world editor writes a key to the Microsoft® Windows registry, making extra V-
Realm Builder library files available for you to use. The installation associates the Edit button in
Simulink 3D Animation blocks with this editor:

1 From your desktop, right-click the MATLAB icon and select Run as administrator.
2 In the MATLAB Command Window, type

vrinstall -install

or type

vrinstall('-install')

The MATLAB Command Window displays the following messages:

Starting editor installation...
Done.

3 Type

vrinstall

If the editor installation was successful, the MATLAB Command Window displays this message:

Virtual World editor: installed
4 Exit MATLAB and restart MATLAB.
5 Set the default editor to V-Realm Builder. In MATLAB, enter:

vrsetpref('Editor','*VREALM');
6 To open a file in the V-Realm editor, in MATLAB navigate to a virtual world file, right-click, and

select Edit.

2 Installation

2-14

Note The vredit command opens the 3D World Editor, regardless of the default editor
preference setting.

V-Realm Builder Help

Note You cannot access the V-Realm Builder documentation from the web. If you are reading this
page on the web, then open the MATLAB Help browser and navigate to the V-Realm Builder
documentation.

To access V-Realm Builder help from the MATLAB Help browser, click V-Realm Builder help.

You can view the V-Realm Builder help even if you have not installed V-Realm Builder.

Uninstall V-Realm Builder
Use the MathWorks uninstaller. Running this utility removes the Simulink 3D Animation and Ligos V-
Realm Builder software from your system. It also restores your previous system configuration.

1 On the Windows task bar, click Start, point to MATLAB, and then click the uninstaller.

The MathWorks uninstaller begins running.
2 Select the Simulink 3D Animation check box.
3 Follow the remaining uninstall instructions.

See Also
Functions
vrinstall | vrgetpref | vrsetpref

Related Examples
• “Test the Viewer Installation” on page 2-16
• “V-Realm Builder Help” on page 2-15

 Install V-Realm Editor

2-15

Test the Viewer Installation

In this section...
“Section Overview” on page 2-16
“Simulink Testing” on page 2-16
“MATLAB Testing” on page 2-18

Section Overview
The Simulink 3D Animation product includes several Simulink models with the associated virtual
worlds. These models are examples of what you can do with this software. You can use one of these
examples to test the installation of the virtual world viewer.

Simulink Testing
Before you can run this example, install the MATLAB, Simulink, and Simulink 3D Animation products
as follows:

1 In the MATLAB Command Window, type

vrpend

A Simulink window opens with the model for an inverted pendulum. This model, which you can
view in three dimensions with the software, has an interactive set point and trajectory graph.

The Simulink 3D Animation Viewer opens with a 3-D model of the pendulum.

2 Installation

2-16

2 In the Simulink 3D Animation Viewer, from the Simulation menu, click Run. A Trajectory
Graph window opens, and a simulation starts running.

3 In the Simulink 3D Animation Viewer, point to a position on the blue surface and left-click.

The pendulum set point, represented by the green cone, moves to a new location. Next, the path
is drawn on the trajectory graph, and then the pendulum itself moves to the new location.

In the Simulink 3D Animation Viewer, you see the animated movement of the pendulum. Use the
viewer controls to navigate through the virtual world, change the viewpoints, and move the set
point. For more information about using the Simulink 3D Animation Viewer controls, see
“Simulink 3D Animation Viewer” on page 7-4.

4 In the Simulink window, double-click the Trajectory Graph block.

The Block Parameters: Trajectory Graph dialog box opens.

 Test the Viewer Installation

2-17

5 From the Stipend mode list, choose Mouse, then click OK.

You can now use the trajectory graph as a 2-D input device to set the position of the pendulum.
6 Move the mouse pointer into the graph area and click.

The set point (red circle) for the pendulum position moves to a new location.
7 In the Simulink window, from the Simulation menu, click Stop.

The trajectory for the pendulum is displayed in the graph as a blue line.

8 Close the Simulink 3D Animation Viewer and close the Simulink window.

You can try other examples in “Simulink Interface Examples” on page 1-16, or you can start working
on your own projects.

MATLAB Testing
This model, which can be viewed in three dimensions with the software, has a MATLAB interface to
control the figure in a virtual world viewer window.

2 Installation

2-18

Additional examples are listed in the table “MATLAB Interface Examples” on page 1-25.

1 In the MATLAB window, type

vrmemb

The MATLAB interface displays the following messages:

View the published version of this example to learn more about
"vrmemb.m".

The Simulink 3D Animation Viewer opens with a 3-D model.

2 Use the viewer controls to move within the virtual world, or use the example dialog box to rotate
the membrane. Sometimes the Simulink 3D Animation example dialog box is hidden behind the
viewer window.

See Also
Functions
vrinstall

 Test the Viewer Installation

2-19

Related Examples
• “Set the Default Editor” on page 5-5
• “Set the Default Viewer” on page 2-2
• “Set Simulink 3D Animation Preferences” on page 2-5
• “Install V-Realm Editor” on page 2-14

2 Installation

2-20

Simulink Interface

The Simulink 3D Animation product works with both the MATLAB and the Simulink products.
However, the Simulink interface is the preferred way of working with the software. It is more
straightforward to use and all the features are easily accessible through a graphical interface.

• “Connect Virtual Worlds and Models” on page 3-2
• “Open a Viewer Window” on page 3-9
• “Display Virtual World and Start Simulation” on page 3-10
• “View Virtual World on Host Computer” on page 3-12
• “View Virtual World Remotely” on page 3-15
• “Modify Remote Virtual World Via Sensor Events” on page 3-19
• “Interact with Generated Code” on page 3-20

3

Connect Virtual Worlds and Models
In this section...
“Output Simulation Data to a Virtual World” on page 3-2
“Input Virtual World Data to a Model” on page 3-6
“Change the Associated Virtual World” on page 3-7

After you create a virtual world and a Simulink model, to have the virtual world interact with a
dynamic system simulation, connect the model and the virtual world using Simulink 3D Animation
blocks.

• To use simulation data from a model to interact with a virtual world, include a VR Sink block in the
model. For details, see “Output Simulation Data to a Virtual World” on page 3-2.

• To use information from a virtual world to interact with a model, include a VR Source block in the
model. For details, see “Input Virtual World Data to a Model” on page 3-6.

Simulating a Simulink model generates signal data for a dynamic system. To output data from the
model to control and animate a virtual world, use a VR Sink block.

Output Simulation Data to a Virtual World
This example shows how to use simulation data from a model to display a dynamic visualization of the
simulation. The example simulates a plane takeoff and lets you view it in a virtual world. This example
assumes that you are using the Simulink 3D Animation Viewer.

Tip For other examples of how to use the VR Sink block, see Magnetic Levitation Model and
“Geometry Morphing”.

1 In the MATLAB Command Window, type

vrtut2

A Simulink model opens without a Simulink 3D Animation block that connects the model to a
virtual world.

3 Simulink Interface

3-2

2 Simulate the model by clicking Run in the Simulate section of the Simulation tab in the
Simulink toolstrip.

Observe the results of the simulation in the scope windows.
3 To the right of the model, left-click and type VR Sink. In the dialog box, select the VR Sink

block.
4 Select a virtual world for the visualization of your simulation. Double-click the VR Sink block.

Click Browse and select vrtkoff.wrl.

 Connect Virtual Worlds and Models

3-3

5 Associate a virtual world with the model. At the Source File text box, click the Browse button.
The Select World dialog box opens. Find the folder matlabroot\toolbox\sl3d\sl3ddemos.
Select the file vrtkoff.wrl and click OK.

6 In the Description text box, examine the brief description of the model. This description appears
on the list of available worlds served by the Simulink 3D Animation server.

7 Select the Open Viewer automatically parameter and click Apply. The VR Sink dialog box
displays the virtual scene node tree, showing the structure of the associate virtual world.

8 Expand the Plane (Transform) node.

The list of characteristics of the plane can be driven from the Simulink interface. This model
computes the position and the pitch of the plane.

9 In the Plane (Transform) tree, select the translation and rotation fields, which
represent the position and the pitch of the plane, respectively. Click OK.

In the Simulink diagram, the VR Sink block is updated with two inputs.

The first input is Plane rotation. Define the rotation with a four-element vector. The first
three numbers define the axis of rotation. In this example, it is [1 0 0] for the x-axis (see the
Pitch Axis of Rotation block in the model). The pitch of the plane is expressed by the
rotation about the x-axis. The last number is the rotation angle around the x-axis, in radians. The
rotation is in terms of the orientation of the object in space, relative to its parent node.

10 In the Simulink model, connect the line going to the Scope block labeled Display Pitch to the
Plane rotation input.

3 Simulink Interface

3-4

The second input is Plane translation. This input describes the position of the plane in the
virtual world. This position consists of three coordinates, x, y, z. The connected vector must have
three values. In this example, the runway is in the x-z plane (using the VR Signal Expander
block). The y-axis defines the altitude of the plane.

11 In the Simulink model, connect the line going to the Scope block labeled Display Position to
the Plane translation input.

Remove the Scope blocks. Your model looks similar to the figure shown.

12 Double-click the VR Sink block. A viewer window containing the virtual world of the plane opens.

Tip When you next open the model, the associated virtual scene opens automatically. This
behavior occurs even if the Simulink 3D Animation block associated with the virtual scene is in a
subsystem of the model.

13 Run the simulation. In the Simulink 3D Animation Viewer, from the Simulation menu, click Run.

 Connect Virtual Worlds and Models

3-5

A plane, moving right to left, takes off .

Input Virtual World Data to a Model
You can use a VR Source block to provide interactivity between the virtual world and the simulation
of a Simulink model. The VR Source block registers user interactions with the virtual world and
passes that data to the model to affect the simulation of the model. The VR Source block reads values
from virtual world fields specified in the block dialog box and inputs their values to a model. Using
the block in this way, you can:

• Use sensor data from a virtual world to control a simulation.
• Provide interactivity between user navigation and interaction in a virtual world and the simulation

of the model.
• Have a simulation react to virtual world events, such as time ticks or outputs from scripts.
• Use static information from the virtual world, such as the size of a box, to control a simulation.

For example, you can define setpoints in the virtual world, so that user can specify the location of a
virtual world object interactively. The simulation then responds to the changed location of the object.
The VR Source block can read into the model events from the virtual world, such as time ticks or
outputs from scripts. The VR Source block can also read into the model static information about the
virtual world (for example, the size of a box defined in the virtual world 3D file). For examples of
models that use the VR Source block, see Magnetic Levitation Model and Virtual Control Panel.

To use global coordinates for a virtual world object, include a Transform node in that object. Open a
second viewer window by double-clicking the VR Source block. In the second viewer window (which
can overlap the first window), select Simulation > Block Parameters. For the Transform node of
the object, select in the Extensions branch one or both of these Simulink 3D Animation extensions
for converting rotation and translation values into global coordinates: rotation_abs and
translation_abs.

3 Simulink Interface

3-6

See the Manipulator Moving a Load with Use of Global Coordinates example. For additional
information about using the VR Source block and other approaches for provide interactivity in the
model, see “Use Sensors” on page 5-20.

Change the Associated Virtual World
You can associate a different virtual world with a Simulink model or connect different signals.

After you associate a virtual world with a Simulink model, you can select another virtual world or
change signals connected to the virtual world. This example assumes that you have connected the
vrtut2 Simulink model with a virtual world. See “Input Virtual World Data to a Model” on page 3-6.

1 Double-click the VR Sink block in the model. The viewer opens.
2 Open the Block Parameters dialog box of the VR Sink block by selecting Simulation > Block

Parameters.
3 At the Source File text box, click the Browse button. Find the folder matlabroot\toolbox

\sl3d\sl3ddemos. Select the file vrtkoff2.wrl, and click OK. In the VR Sink dialog box,
click Apply.

A virtual scene tree appears on the right side, associating a different virtual world with the
model.

4 Expand the Plane (Transform) node.

The Plane Transform tree expands. Now you can see what characteristics of the plane you can
drive from the Simulink interface. This model computes the position.

5 In the Plane Transform tree, select the translation field check box. Clear the rotation
field check box. Click OK.

The VR Sink block is updated and changes to just one input, the Plane translation. The VR
Sink block is ready to use with the new parameters defined.

6 Verify that the correct output is connected to your VR Sink block. Connect the output from the
VR Signal Expander is connected to the single input.

 Connect Virtual Worlds and Models

3-7

7 In the Simulink 3D Animation Viewer, from the Simulation menu, run the simulation again and
observe the simulation.

See Also
Functions
vredit | vrlib | vrjoystick | vrspacemouse

Blocks
VR Sink | VR Source | Joystick Input | Space Mouse Input | VR To Video | VR Tracer | VR Text Output

Related Examples
• “Add Sensors to Virtual Worlds” on page 5-20
• “Interact with Generated Code” on page 3-20
• “Link to Models”
• “Interact with Virtual Reality Worlds”

3 Simulink Interface

3-8

Open a Viewer Window
When you simulate a model that contains a VR Sink block, your default viewer opens and displays the
virtual scene. For more information on setting your default viewer, see “Set the Default Viewer” on
page 2-2.

Multiple instances of the viewer can exist on your screen. A viewer appears each time you select the
File menu New Window option in the Simulink 3D Animation Viewer. This feature is useful if you
want to view one scene from many different viewpoints at the same time.

If you close the viewer window, you can reopen it. In the Simulink model window, double-click the VR
Sink block.

See Also
Functions
vredit | vrgetpref | vrsetpref

Related Examples
• “Set the Default Viewer” on page 2-2
• “View Dynamic System Simulations”

 Open a Viewer Window

3-9

Display Virtual World and Start Simulation
This example explains how to display a simulated virtual world using the Simulink 3D Animation
Viewer on your host computer. The Simulink 3D Animation Viewer is the default and recommended
method for viewing virtual worlds. A Simulink window opens with the model of a simple automobile.
Automobile trajectory (vehicle position and angle) is viewed in virtual reality:

1 In the MATLAB Command Window, type

vrtut1

A Simulink window opens with the model of an automobile.

A virtual world viewer also opens with a 3-D model of the virtual world associated with the
model.

3 Simulink Interface

3-10

2 In the Simulink 3D Animation Viewer, from the Simulation menu, click Run.

The simulation starts. In the Simulink 3D Animation Viewer, a car moves along the mountain
road.

3 Use the Simulink 3D Animation Viewer controls to move the camera within this virtual world
while the simulation is running. For more information on the Simulink 3D Animation Viewer
controls, see “Simulink 3D Animation Viewer” on page 7-4.

4 In the Simulink 3D Animation Viewer, from the Simulation menu, click Stop.

See Also
Functions
vredit | vrgetpref | vrsetpref

Blocks
VR Sink | VR Source

Related Examples
• “Set the Default Viewer” on page 2-2
• “View Dynamic System Simulations”
• “View Virtual World on Host Computer” on page 3-12
• “View Virtual World Remotely” on page 3-15

 Display Virtual World and Start Simulation

3-11

View Virtual World on Host Computer
Normally, you view a virtual world by double-clicking the VR Sink in the Simulink model. The virtual
world opens in the Simulink 3D Animation Viewer or your HTML5-enabled web browser, depending
on your DefaultViewer setting. For more information on setting your default viewer, see “Set the
Default Viewer” on page 2-2.

Alternatively, you can view a virtual world in your web browser by selecting an open virtual world
from a list in your web browser. You can display the HTML page that contains this list by connecting
to the Simulink 3D Animation host. The host is the computer on which the Simulink 3D Animation
software is running. You do not need an HTML5-enabled web browser to display this page.

A virtual world appears on this list in your web browser only if the vrworld Description property
contains a string. If this property is empty for a virtual world, that world is not accessible from the
remote host. The simplest way to set a world description is to define the virtual world 3D file
WorldInfo node and fill in the title field for that node. You can set up the WorldInfo node to look
like the following:

WorldInfo { title
 "My First World"
 info ["Author: XY"]
 }

The vrworld object uses the title string in the virtual world 3D file for the Description property
of the vrworld object. You can change this property with the Simulink 3D Animation MATLAB
interface (vrworld/set).

The following procedure describes how to connect to the Simulink 3D Animation host:

1 At the MATLAB command prompt, type

vrbounce

The VR Bouncing Ball example is loaded and becomes active.
2 Open your HTML5-enabled web browser. In the address line of the browser, type

http://localhost:8123

Note To connect to the main HTML page from a client computer, type http://
hostname:8123, where hostname is the name of the computer on which the Simulink 3D
Animation software is running.

The following page is loaded and becomes active.

The main HTML page for the Simulink 3D Animation product lists the currently available (active)
virtual worlds. In this example, the VR Bouncing Ball virtual world appears as a link.

3 Simulink Interface

3-12

3 Click VR Bouncing Ball.

The VR Bouncing Ball virtual world appears in your web browser.

 View Virtual World on Host Computer

3-13

From the main HTML page, select one of the listed worlds or click the reload link to update the
status of the virtual worlds supported by the software. This page does not require the VRML or X3D
capabilities from the browser; it is a standard HTML page. However, when you click one of the virtual
world links in the list, the browser must be HTML5-enabled to display the virtual world correctly and
to communicate with the Simulink 3D Animation product.

See Also

Related Examples
• “Display Virtual World and Start Simulation” on page 3-10
• “Set the Default Viewer” on page 2-2
• “View Dynamic System Simulations”
• “View Virtual World Remotely” on page 3-15

3 Simulink Interface

3-14

View Virtual World Remotely
The Simulink 3D Animation software allows you to simulate a process on a host computer while
running the visualization of the process on a client computer. You view the virtual world on the client
computer using a web browser. This client computer is connected to the host computer through a
network using the TCP/IP protocol. Setting up this configuration requires that you know the name or
IP address of the host computer you want to access from the client computer.

Viewing a virtual world on a client computer is useful for:

• Remote computing
• Presentation of the results over the web
• Distribution of computing and graphical power

This example explains how to display a simulated virtual world on a client computer. In this case, the
client computer is a PC platform with a Simulink 3D Animation Web Viewer. For a similar example
using the Orbisnap viewer, see “View Virtual Worlds Remotely with Orbisnap” on page 8-13).

In the following example, a Simulink window opens with the model of a simple automobile. The
automobile trajectory (vehicle position and angle) is viewed in virtual reality:

1 On the host computer, in the MATLAB Command Window, type

vrtut1

A Simulink window opens with the model of an automobile.

2 Double-click the VR Sink block. This block is in the right part of the model window.

A virtual world viewer also opens with a 3-D model of the virtual world associated with the
model.

3 In the virtual world viewer, select the Simulation menu Block Parameters option.

A VR Sink block parameters dialog box opens.

 View Virtual World Remotely

3-15

4 Select the Allow viewing from the Internet check box.

Note This option allows any computer connected to the network to view your model. Do not
select this box when you want your model to be private or confidential.

5 Click OK.
6 On the client computer, open your HTML5-enabled web browser. In the Address line, enter the

address and Simulink 3D Animation port number for the host computer running the Simulink
software. For example, if the IP address of the host computer is 192.168.0.1, enter:

http://192.168.0.1:8123

To determine your IP address on a Windows system, type cmd, and enter ipconfig.

To determine your IP address on a UNIX system, type the command

ifconfig device_name

Click OK. An IP Configuration dialog box opens with a list of your IP, mask, and gateway
addresses.

Alternatively, for Windows platforms, you can open a DOS shell and type ipconfig.

The web browser displays the main Simulink 3D Animation HTML page. Only one virtual world is
in the list because you have only one Simulink model open.

3 Simulink Interface

3-16

7 Click VR Car in the Mountains.

The web browser displays a 3-D model of the virtual world associated with the model.

 View Virtual World Remotely

3-17

8 On the host computer, in the Simulink window, from the Simulation menu, click Run.

On the client computer, the animation of the scene reflects the process simulated in the Simulink
diagram on the host computer.

You can tune communication between the host and the client computer by setting the Sample
time and Transport buffer size parameters.

9 Use the web browser controls to move within this virtual world while the simulation is running.
10 On the host computer, in the Simulink window, from the Simulation menu, click Stop. On the

client computer, close the web browser window.

See Also

Related Examples
• “Display Virtual World and Start Simulation” on page 3-10
• “Set the Default Viewer” on page 2-2
• “View Dynamic System Simulations”
• “View Virtual World on Host Computer” on page 3-12

3 Simulink Interface

3-18

Modify Remote Virtual World Via Sensor Events
Interactive mode allows clients to modify a remote virtual world via events from sensor nodes defined
in the virtual world. Interactive mode is useful when a virtual world includes a sensor.

Interactive mode is disabled by default on clients. You can enable (or later disable) interactive mode
on a client via context menu in the Web Viewer or by pressing the I key shortcut.

You can disable interactive mode for a particular virtual world on the host computer. For details, see
the ClientUpdates property, using vrworld/get or vrworld/set.

See Also

Related Examples
• “Add Sensors to Virtual Worlds” on page 5-20
• “Read Sensor Values” on page 5-21

 Modify Remote Virtual World Via Sensor Events

3-19

Interact with Generated Code
You can have a virtual world that you create the Simulink 3D Animation product interact with code
generated by the Simulink Coder product and compiled with a third-party C/C++ compiler in the
Simulink Desktop Real-Time environment. To do so, use the Simulink External mode.

See Also

Related Examples
• “Connect Virtual Worlds and Models” on page 3-2

3 Simulink Interface

3-20

MATLAB Interface

Although using the Simulink 3D Animation software with the Simulink interface is the preferred way
of working with the Simulink 3D Animation software, you can also use the MATLAB interface. Enter
commands directly in the MATLAB Command Window or use scripts to control virtual worlds.

• “Create vrworld Object for a Virtual World” on page 4-2
• “Open a Virtual World with MATLAB” on page 4-3
• “Interact with a Virtual World with MATLAB” on page 4-5
• “Close and Delete a vrworld Object” on page 4-9
• “Animation Recording” on page 4-10
• “Define File Name Tokens” on page 4-12
• “File Name Tokens” on page 4-14
• “Manual 3-D Recording with MATLAB” on page 4-16
• “Manual 2-D AVI Recording with MATLAB” on page 4-18
• “Scheduled 3-D Recording with MATLAB” on page 4-20
• “Scheduled 2-D AVI Recording with MATLAB” on page 4-22
• “Record Animations for Unconnected Virtual Worlds” on page 4-24
• “Play Animation Files” on page 4-27

4

Create vrworld Object for a Virtual World
To connect MATLAB to a virtual world and to interact with that virtual world through the MATLAB
command-line interface, create vrworld and vrnode objects. A virtual world 3D file defines a virtual
world.

Note The Simulink interface and the MATLAB interface share virtual world objects. This sharing of
objects enables you to use the MATLAB interface to change the properties of vrworld objects
originally created by Simulink with Simulink 3D Animation blocks.

After you create a virtual world, you can create a vrworld object. This procedure uses the virtual
world vrmount.wrl as an example.

1 Open MATLAB. In the MATLAB Command Window, type

myworld = vrworld('vrmount.wrl')

The MATLAB Command Window displays output like

myworld =
 vrworld object: 1-by-1

VR Car in the Mountains
(matlabroot/toolbox/sl3d/vrdemos/vrmount.wrl)

2 Type

vrwhos

The MATLAB Command Window displays the messages

 Closed, associated with
 'C:matlabroot\toolbox\sl3d\sl3ddemos\vrmount.wrl'.
 Visible for local viewers.
 No clients are logged on.

The vrworld object myworld is associated with the virtual world vrmount.wrl. You can think of the
variable myworld as a handle to the vrworld object stored in the MATLAB workspace.

Your next step is to open a virtual world using the vrworld object. See “Open a Virtual World with
MATLAB” on page 4-3.

See Also
Functions
vrworld

Related Examples
• “Open a Virtual World with MATLAB” on page 4-3
• “Interact with a Virtual World with MATLAB” on page 4-5
• “Close and Delete a vrworld Object” on page 4-9

4 MATLAB Interface

4-2

Open a Virtual World with MATLAB
Open a virtual world to view the virtual world in a virtual world viewer, scan its structure, and change
virtual world properties from the MATLAB Command Window.

After you create a vrworld object, you can open the virtual world by using the vrworld object
associated with that virtual world. This procedure uses the vrworld object myworld associated with
the virtual world vrmount.wrl as an example:

1 In the MATLAB Command Window, type

open(myworld);

The MATLAB Command Window opens the virtual world vrmount.wrl.
2 Type

set(myworld, 'Description', 'My first virtual world');

The Description property is changed to My first virtual world. This description displays
in all Simulink 3D Animation object listings, in the title bar of the Simulink 3D Animation Viewer,
and in the list of virtual worlds on the Simulink 3D Animation HTML page.

3 Display the virtual world vrmount.wrl. Type

view(myworld)

The viewer that is set as the default viewer displays the virtual scene. The default viewer is
typically the Simulink 3D Animation Viewer unless you have a different viewer set.

Alternatively, you can display the virtual world in an HTML5-enabled web browser.

1 Repeat steps 1 and 2 of the preceding procedure.
2 Open a web browser. In the Address box, type

http://localhost:8123

The browser displays the Simulink 3D Animation HTML page with a link to My first virtual
world. The number 8123 is the default Simulink 3D Animation port number. If you set a different
port number on your system, enter that number in place of 8123 and restart MATLAB. For more
information on the Simulink 3D Animation HTML page, see “View Virtual World on Host
Computer” on page 3-12.

3 If the web browser has the VRML or X3D plug-in installed, in the browser window, click My first
virtual world.

4 Your default HTML5-enabled web browser displays the virtual world vrmount.wrl.

Note If your web browser is not HTML5-enabled, clicking a virtual world link such as My first
virtual world results in a broken link message. The browser cannot display the virtual world.

For more information on changing your default viewer, see “Set the Default Viewer” on page 2-2.

 Open a Virtual World with MATLAB

4-3

See Also
Functions
vrworld

Related Examples
• “Create vrworld Object for a Virtual World” on page 4-2
• “Interact with a Virtual World with MATLAB” on page 4-5
• “Close and Delete a vrworld Object” on page 4-9

4 MATLAB Interface

4-4

Interact with a Virtual World with MATLAB
In this section...
“Set Values for Nodes” on page 4-5
“Read Sensor Values Using MATLAB” on page 4-7

Set Values for Nodes
In the life cycle of a vrworld object you can set new values for all the available virtual world nodes
and their fields using vrnode object methods. This way, you can change and control the degrees of
freedom for the virtual world from within the MATLAB environment.

An object of type vrworld contains nodes named in the virtual world 3D file using the DEF
statement. These nodes are of type vrnode. For more information, see vrworld and vrnode
functions.

After you open a vrworld object, you can get a list of available nodes in the virtual world. This
procedure uses the vrworld object myworld and the virtual world vrmount.wrl as an example. To
create the myworld, see “Create vrworld Object for a Virtual World” on page 4-2.

1 In the MATLAB Command Window, type

nodes(myworld);

The MATLAB Command Window displays a list of the vrnode objects and their fields that are
accessible from the Simulink 3D Animation software.

 Tunnel (Transform) [My first virtual world]
 Road (Shape) [My first virtual world]
 Bridge (Shape) [My first virtual world]
 River (Shape) [My first virtual world]
 ElevApp (Appearance) [My first virtual world]
 Canal (Shape) [My first virtual world]
 Wood (Group) [My first virtual world]
 Tree1 (Group) [My first virtual world]
 Wheel (Shape) [My first virtual world]
 Automobile (Transform) [My first virtual world]
 VPfollow (Viewpoint) [My first virtual world]
 Camera_car (Transform) [My first virtual world]
 View1 (Viewpoint) [My first virtual world]

2 Type

mynodes = get(myworld, 'Nodes')

The MATLAB software creates an array of vrnode objects corresponding to the virtual world
nodes and displays

mynodes =

 vrnode object: 13-by-1

 Tunnel (Transform) [My first virtual world]
 Road (Shape) [My first virtual world]
 Bridge (Shape) [My first virtual world]

 Interact with a Virtual World with MATLAB

4-5

 River (Shape) [My first virtual world]
 ElevApp (Appearance) [My first virtual world]
 Canal (Shape) [My first virtual world]
 Wood (Group) [My first virtual world]
 Tree1 (Group) [My first virtual world]
 Wheel (Shape) [My first virtual world]
 Automobile (Transform) [My first virtual world]
 VPfollow (Viewpoint) [My first virtual world]
 Camera_car (Transform) [My first virtual world]
 View1 (Viewpoint) [My first virtual world]

3 Type

whos

The MATLAB Command Window displays the messages

Name Size Bytes Class

 ans 1x1 132 vrfigure object
 mynodes 13x1 3564 vrnode object
 myworld 1x1 132 vrworld object

Now you can get node characteristics and set new values for certain node properties. For
example, you can change the position of the automobile by using Automobile, which is the
fourth node in the virtual world.

4 Access the fields of the Automobile node by typing

fields(myworld.Automobile)

or

fields(mynodes(10));

The MATLAB Command Window displays information about the Automobile node.

 Field Access Type Sync

 addChildren eventIn MFNode off
 removeChildren eventIn MFNode off
 children exposedField MFNode off
 center exposedField SFVec3f off
 rotation exposedField SFRotation off
 scale exposedField SFVec3f off
 scaleOrientation exposedField SFRotation off
 translation exposedField SFVec3f off
 bboxCenter field SFVec3f off
 bboxSize field SFVec3f off

The Automobile node is of type Transform. This node allows you to change its position by
changing its translation field values. From the list, you can see that translation requires
three values, representing the [x y z] coordinates of the object.

5 Type

view(myworld)

Your default viewer opens and displays the virtual world vrmount.wrl.

4 MATLAB Interface

4-6

6 Move the MATLAB window and the browser window side by side so you can view both at the
same time. In the MATLAB Command Window, type

myworld.Automobile.translation = [15 0.25 20];

The MATLAB sets a new position for the Automobile node. You can observe that the car is
repositioned in the virtual world browser window.

You can change the node fields listed by using the function vrnode/setfield.

Note The dot notation is the preferred method for accessing nodes.

Read Sensor Values Using MATLAB
To read a value of a readable field (either exposedField or eventOut), first synchronize that field
with the vrnode/sync method. After synchronization, each time the field changes in the scene, the
field value updates on the host. You can then read the value of the field with the vrnode/getfield
method or directly access the field value using dot notation.

The virtual scene for the Magnetic Levitation Model example, maglev.wrl, contains a PlaneSensor
(with the DEF name 'Grab_Sensor'). The PlaneSensor is attached to the ball geometry to register
your attempts to move the ball up or down when grabbing it using the mouse. The example uses the
sensor fields minPosition and maxPosition to restrict movement in other directions. You can use
the output of the sensor translation field as the new setpoint for the ball position controller. You can
read the sensor output value into a MATLAB variable setpoint.

1 Create the vrworld object and open the world.

wh = vrworld('maglev.wrl');
open(wh);

2 Get the node handle.

nh = vrnode(wh, 'Grab_Sensor');
3 Synchronize the translation field.

sync(nh, 'translation', 'on');
4 Read the synchronized field value, using one of these three alternatives:

setpoint = getfield(nh, 'translation');
setpoint = nh.translation;
setpoint = wh.Grab_Sensor.translation;

Global Coordinates for Rotation and Translation

Rotation and translation values for a Transform object are specified in local coordinates, relative to
the parent object of the object. Simulink 3D Animation provides two extensions for converting
rotation and translation values into global coordinates: rotation_abs and translation_abs. To
access these global coordinates, use dot notation with the translation or rotation field, adding _abs to
the field name. This example shows the difference between the local and global coordinates for
translation:

 Interact with a Virtual World with MATLAB

4-7

w = vrview('vrmanipul.wrl');
n = get(w,'Nodes');
n = w.Grip_Reference;
n.translation
n.translation_abs

ans =

 0 -0.1000 0

ans =

 -3.0406 -3.0000 2.3334

See Also
Functions
vrworld

Related Examples
• “Create vrworld Object for a Virtual World” on page 4-2
• “Open a Virtual World with MATLAB” on page 4-3
• “Close and Delete a vrworld Object” on page 4-9

4 MATLAB Interface

4-8

Close and Delete a vrworld Object
After you are finished with a session, close all open virtual worlds and remove them from memory:

1 In the MATLAB Command Window, type

close(myworld);
delete(myworld);

The virtual world representation of the vrworld object myworld is removed from memory. All
possible connections to the viewer and browser are closed and the virtual world name is removed
from the list of available worlds.

Note Closing and deleting a virtual world does not delete the vrworld object handle myworld from
the MATLAB workspace.

See Also
Functions
vrworld

Related Examples
• “Create vrworld Object for a Virtual World” on page 4-2
• “Open a Virtual World with MATLAB” on page 4-3
• “Interact with a Virtual World with MATLAB” on page 4-5

 Close and Delete a vrworld Object

4-9

Animation Recording
In this section...
“Recording Formats” on page 4-10
“Manual and Scheduled Animation Recording” on page 4-10

The Simulink 3D Animation software enables you to record animations of virtual scenes that the
Simulink or MATLAB product controls. You can record simulations through either the Simulink 3D
Animation Viewer (described in “Simulink 3D Animation Viewer” on page 7-4) or the MATLAB
interface. You can then play back these animations offline, in other words, independent of the
MATLAB, Simulink, or Simulink 3D Animation products. You can generate such files for
presentations, to distribute simulation results, or to generate archives.

Note If you are working with virtual scenes controlled from MATLAB, you can record virtual scenes
through the MATLAB interface. Optimally, use the Simulink 3D Animation Viewer to record
animations of virtual worlds associated with Simulink models. This method ensures that all necessary
virtual world and vrfigure properties are properly set to record simulations. For details, see
“Record Offline Animations” on page 7-29.

Recording Formats
You can save the virtual world offline animation data in the following formats:

• 3-D virtual world file — The Simulink 3D Animation software traces object movements and saves
that data into a virtual world 3D file using VRML97 standard interpolators. You can then view
these files with the Simulink 3D Animation Viewer. 3-D VRML files typically use much less disk
space than Audio Video Interleave (AVI) files. If you make any navigation movements in the
Simulink 3D Animation Viewer while recording the animation, the Simulink 3D Animation software
does not save any of these movements.

Note If you distribute virtual world 3D animation files, be sure to distribute all the inlined object
and texture files referenced in the original virtual world 3D world file.

• 2-D Audio Video Interleave (AVI) file — The Simulink 3D Animation software writes animation data
into an .avi file. The Simulink 3D Animation software uses vrfigure objects to record 2-D
animation files. The recorded 2-D animation reflects exactly what you see in the viewer window. It
includes any navigation movements you make during the recording.

Note While recording 2-D .avi animation data, always ensure that the Simulink 3D Animation
Viewer is the topmost window and fully visible. Graphics acceleration limitations can prevent the
proper recording of 2-D animation otherwise.

Manual and Scheduled Animation Recording
You can use MATLAB to either manually record an animation or schedule a preset time interval for
recording. For details, see:

• “Manual 3-D Recording with MATLAB” on page 4-16

4 MATLAB Interface

4-10

• “Manual 2-D AVI Recording with MATLAB” on page 4-18
• “Scheduled 3-D Recording with MATLAB” on page 4-20
• “Scheduled 2-D AVI Recording with MATLAB” on page 4-22

See Also
Functions
vrplay | vrview

Related Examples
• “Share Visualizations”
• “Define File Name Tokens” on page 4-12

More About
• “File Name Tokens” on page 4-14

 Animation Recording

4-11

Define File Name Tokens

In this section...
“Default File Name Format” on page 4-12
“Uses for File Name Tokens” on page 4-12

Default File Name Format
By default, the Simulink 3D Animation Viewer records simulations or captures virtual scene frames in
a file named with the following format:

%f_anim_%n.%e

This format creates a unique file name each time you capture a frame or record the animation. The
file name uses the %f, %n, and %e tokens.

The %f token is replaced with the name of the virtual world associated with the model. The %n token
is a number that increments each time that you record a simulation for the same virtual world. For
example, if the name of the virtual world file is vrplanets.vrml and you record a simulation for the
first time, the animation file is vrplanets_anim_1.wrl. If you record the simulation a second time,
the animation file name is vrplanets_anim_2.wrl. In the case of frame captures, capturing
another frame of the scene increments the number.

The %e token represents the virtual world 3D file extension (.wrl, .x3d, or .x3dv) as the extension
of the virtual world that drives the animation. By default, the %e token uses the file extension of the
virtual world 3D file that drives the animation. The VR Sink and VR Source block Source file
parameter specifies the file extension of the virtual world. You can specify a different extension.
However, if the file extension in the Source file parameter is .x3d or .x3dv, you cannot set %e
token to .wrl (VRML).

Uses for File Name Tokens
You can use several tokens to customize the automated generation of frame capture or animation
files. To use these tokens to create varying frame capture or animation file names, you can:

• Create files whose root names are the same as the root names of the virtual world. This option is
useful if you use different virtual worlds for one model.

• Create files in directories relative to the virtual world location. This option is useful if you want to
ensure that the virtual world file and frame capture or animation file are in the same folder.

• Create rolling numbered file names such that subsequent frame captures or runs of the model
simulation create incrementally numbered file names. This approach is useful if you expect to
create files of different parts of the model simulation. This feature allows you to capture a frame
or run a Simulink model multiple times, but create a unique file each time.

• Create multiple file names with time or date stamps, with a unique file created each time.

See “File Name Tokens” on page 4-14 for a summary of the file name tokens.

4 MATLAB Interface

4-12

See Also

Related Examples
• “Share Visualizations”

More About
• “File Name Tokens” on page 4-14

 Define File Name Tokens

4-13

File Name Tokens
The software supports various file naming formats using file tokens. By default, the Viewer captures
virtual scene frames or records simulations in a file named with the following format: %f_anim_
%n.%e. This format creates a unique file name each time you capture a frame or record the
animation.

The following tokens are the same for frame capture (.tif or .png) or animation
(.wrl, .x3d, .x3dv, and .avi) files.

Token Description
%n The current incremental number replaces this token in the file name string. Each

subsequent frame capture or run of the simulation increments the number. For
example, the format %f_anim_%n.wrl saves the animation to
vrplanets_anim_1.wrl on the first run, vrplanets_anim_2.wrl on the second
run, and so forth.

%f The virtual world file name replaces this token in the file name string. For example, the
format %f_anim_%D.wrl saves the animation to vrplanets_anim_29.wrl.

%e The virtual world file name replaces this token represents with the virtual world 3D file
extension (.wrl, .x3d, or .x3dv). By default, the %e token uses the file extension of
the virtual world 3D file that drives the animation. The VR Sink and VR Source block
Source file parameter specifies the file extension of the virtual world.

You can specify a different extension. However, if the file extension in the Source file
parameter is .x3d or .x3dv, you cannot set %e token to .wrl (VRML).

%d The full path to the virtual world 3D file replaces this token in the file name string and
creates files in directories relative to the virtual world file location. For example, the
format %d/animdir/%f_anim_%n.avi saves the animation in the animdir subfolder
of the folder containing the virtual world 3D file. If animdir subfolder does not exist,
the software creates the animdir subfolder. This token is most helpful if you want to
ensure that the virtual world file and animation file are in the same folder.

%Y The current four-digit year replaces this token in the file name string. For example, the
format %f_anim_%Y.wrl saves the animation to vrplanets_anim_2015.wrl for the
year 2015.

%M The current month replaces this token in the file name string. For example, the format
%f_anim_%M.wrl saves the animation to vrplanets_anim_4.wrl for a start record
time in April.

%D The current day in the month replaces this token in the file name string. For example,
the format %f_anim_%D.wrl saves the animation to vrplanets_anim_29.wrl for
the 29th day of the month.

%h The current hour replaces this token in the file name string. For example, the format
%f_anim_%h.wrl saves the animation to vrplanets_anim_14.wrl for any time
between 14:00 and 15:00.

%m The current minute replaces this token in the file name string. For example, the format
%f_anim_%h%m.wrl saves the animation to vrplanets_anim_1434.wrl for a start
record time of 14:34.

4 MATLAB Interface

4-14

Token Description
%s The current second replaces this token in the file name string. For example, the format

%f_anim_%h%m%s.wrl saves the animation to vrplanets_anim_150430.wrl for a
start record time of 15:04:30.

See Also

Related Examples
• “Define File Name Tokens” on page 4-12
• “Share Visualizations”

 File Name Tokens

4-15

Manual 3-D Recording with MATLAB
This topic describes how to record a 3-D animation manually using the MATLAB interface for a virtual
world that is associated with a Simulink model. In this example, the timing of the animation file
derives from the simulation time. One second of the recorded animation time corresponds to one
second of Simulink time. You create and record the animation file by interactively starting and
stopping the recording from the MATLAB Command Window.

This procedure uses the vrplanets example. It describes how to create a virtual world 3D animation
file name with the default name format.

1 Run the Simulink model for vrplanets. In the MATLAB window, type

vrplanets

The Simulink model appears. Also by default, the Simulink 3D Animation Viewer for that model is
loaded and becomes active. If the viewer does not appear, double-click the Simulink® 3D
Animation block in the Simulink model.

2 To work with the virtual world associated with vrplanets from the MATLAB interface, retrieve
the virtual world handle. Use the vrwhos command. Type

vrwhos

If the result shows that only one vrworld object is in the workspace, assign its handle directly to
a variable. Type

myworld = vrwho;

If multiple virtual worlds are listed, select which of these virtual worlds you want to manipulate.
To select the virtual world, you can use indexing or a selection method using a string comparison
of virtual world descriptions. For the indexing method, type

worlds = vrwho;
myworld = worlds(1);

For the string comparison method, type

worlds = vrwho;
myworld =
worlds(strcmp('Planets',get(worlds,'Description')));

3 To have the Simulink 3D Animation software manually record the animation, set the RecordMode
property to manual. Type

set(myworld,'RecordMode','manual');
4 Direct the Simulink 3D Animation software to record the animation to a virtual world 3D format

file. Type

set(myworld,'Record3D','on');
5 Run the Simulink model. From the Simulation menu, select Mode > Normal, then click

Simulation > Run. Alternatively, if you are using the Simulink 3D Animation default viewer, you
can run the Simulink model with one of the following from the viewer.

• From the menu bar, select the Simulation menu Start option to start or stop the simulation.
• From the toolbar, click Start/pause/continue simulation to start the simulation.

4 MATLAB Interface

4-16

• From the keyboard, press Ctrl+T to start the simulation.
6 As the simulation runs, start recording the animation by setting the virtual world Recording

property. Type

set(myworld,'Recording','on');

This setting turns on the recording state.
7 When you want to stop the recording operation, type:

set(myworld,'Recording','off');

The Simulink 3D Animation software stops recording the animation. The Simulink 3D Animation
software creates the file vrplanets_anim_1.wrl in the current working folder. If the
simulation stops before you stop recording, the recording operation stops and creates the
animation file.

8 Stop the simulation. You can use one of the following from the viewer.

• From the menu bar, select the Simulation menu Stop option to stop the simulation.
• From the toolbar, click Stop simulation to stop the simulation.
• From the keyboard, press Ctrl+T to stop the simulation.

You do not need to stop the recording manually before stopping the simulation. If you do not
manually stop the recording, the recording operation does not stop and create the animation file
when the simulation stops.

9 Close and delete the objects if you do not want to continue using them.

See Also

Related Examples
• “Manual 2-D AVI Recording with MATLAB” on page 4-18
• “Scheduled 3-D Recording with MATLAB” on page 4-20
• “Scheduled 2-D AVI Recording with MATLAB” on page 4-22
• “Record Animations for Unconnected Virtual Worlds” on page 4-24
• “Play Animation Files” on page 4-27

More About
• “File Name Tokens” on page 4-14

 Manual 3-D Recording with MATLAB

4-17

Manual 2-D AVI Recording with MATLAB
This topic describes how to record a 2-D animation manually using the MATLAB interface for a virtual
world that is associated with a Simulink model. In this example, the timing of the animation file
derives from the simulation time. One second of the recorded animation time corresponds to one
second of Simulink time. You create and record the animation file by interactively starting and
stopping the recording from the MATLAB Command Window.

This procedure uses the vrplanets example. It describes how to create an .avi animation file name
with the default name format.

1 Run the Simulink model for vrplanets. In the MATLAB window, type

vrplanets

The Simulink model appears. Also by default, the Simulink 3D Animation Viewer for that model is
loaded and becomes active. If the viewer does not appear, double-click the Simulink® 3D
Animation block in the Simulink model.

2 To work with the virtual world associated with vrplanets from the MATLAB interface, retrieve
the virtual world handle. Use the vrwhos command. Type

vrwhos
3 If the result indicates that only one vrworld object is in the workspace, assign its handle directly

to a variable. Type

myworld = vrwho;

If multiple virtual worlds are listed, select which of these virtual worlds you want to manipulate.
To select the virtual world, you can use indexing or a selection method using a string comparison
of virtual world descriptions. For the indexing method, type

worlds = vrwho;
myworld = worlds(1);

For the string comparison method, type

worlds = vrwho;
myworld =
worlds(strcmp('Planets',get(worlds,'Description')));

If the description string is unique, myworld is assigned the correct virtual world.
4 To retrieve the handle to the currently displayed the Simulink 3D Animation Viewer figure, type

f=get(myworld,'Figures')
5 To have the software manually record the animation, set the RecordMode property to manual.

Type

set(myworld,'RecordMode','manual');
6 Direct the Simulink 3D Animation software to record the animation as a .avi format file. Type

set(f,'Record2D','on');
7 Disable the navigation panel. The navigation panel appears at the bottom of the virtual scene

view. You can turn off this panel for a cleaner view of the virtual scene. Type

set(f,'NavPanel','none');

4 MATLAB Interface

4-18

8 Run the Simulink model. From the Simulation menu, select Mode > Normal, then click
Simulation > Run. Alternatively, if you are using the Simulink 3D Animation default viewer, you
can run the Simulink model with one of the following from the viewer:

• From the menu bar, select the Simulation menu Start option to start or stop the simulation.
• From the toolbar, click Start/pause/continue simulation to start the simulation.
• From the keyboard, press Ctrl+T to start the simulation.

9 As the simulation runs, start recording the animation by setting the virtual world Recording
property. Type

set(myworld,'Recording','on');

This setting turns on the recording state.
10 To stop the recording operation, type:

set(myworld,'Recording','off');

The Simulink 3D Animation software stops recording the animation. The Simulink 3D Animation
software creates the file vrplanets_anim_1.avi in the current working folder. If the
simulation stops before you stop recording, the recording operation stops and creates the
animation file.

11 Stop the simulation. You can use one of the following from the viewer.

• From the menu bar, select the Simulation menu Stop option to stop the simulation.
• From the toolbar, click Stop simulation to stop the simulation.
• From the keyboard, press Ctrl+T to stop the simulation.

You do not need to stop the simulation manually. If you do not manually stop the recording, the
recording operation does not stop and create the animation file until the simulation stops.

12 If you want to enable the Navigation Panel again, type

set(f,'NavPanel','halfbar');
13 Close and delete the objects if you do not want to continue using them.

See Also

Related Examples
• “Manual 3-D Recording with MATLAB” on page 4-16
• “Scheduled 3-D Recording with MATLAB” on page 4-20
• “Scheduled 2-D AVI Recording with MATLAB” on page 4-22
• “Record Animations for Unconnected Virtual Worlds” on page 4-24
• “Play Animation Files” on page 4-27

More About
• “File Name Tokens” on page 4-14

 Manual 2-D AVI Recording with MATLAB

4-19

Scheduled 3-D Recording with MATLAB
This topic describes how to schedule the recording of a 3-D animation using the MATLAB interface
for a virtual world that is associated with a Simulink model. You control the animation file recording
by presetting a time interval. The Simulink 3D Animation software records the animation during this
interval in the simulation. In this example, the timing of the recorded animation file derives from the
simulation time. One second of the recorded animation time corresponds to one second of Simulink
time.

This procedure uses the vrplanets example. It describes how to create a virtual world 3D animation
file name with the default name format.

1 Run the Simulink model for vrplanets. In the MATLAB window, type

vrplanets

The Simulink model is displayed. Also by default, the Simulink 3D Animation Viewer for that
model is loaded and becomes active. If the viewer is not displayed, double-click the Simulink®
3D Animation block in the Simulink model.

2 To work with the virtual world associated with vrplanets from the MATLAB interface, retrieve
the virtual world handle. Use the vrwhos command. Type

vrwhos
3 If the result indicates that only one vrworld object is in the workspace, assign its handle

directly to a variable. Type

myworld = vrwho;

If multiple virtual worlds are listed, select which of these virtual worlds you want to manipulate.
To select the virtual world, you can use indexing or a selection method using a string comparison
of virtual world descriptions. For the indexing method, type

worlds = vrwho;
myworld = worlds(1);

For the string comparison method, type

worlds = vrwho;
myworld =
worlds(strcmp('Planets',get(worlds,'Description')));

4 Direct the Simulink 3D Animation software to record the animation on a schedule by setting the
RecordMode property to scheduled. Type

set(myworld,'RecordMode','scheduled');
5 Direct the Simulink 3D Animation software to record the animation in a virtual world 3D format

file.

set(myworld,'Record3D','on');
6 Select the start and stop times during which you want to record the animation. For example,

enter 5 as the start time and 15 as the stop time.

set(myworld,'RecordInterval',[5 15]);

Ensure that the recording start time value is not earlier than the start time of the Simulink
model; the recording operation cannot start in this instance. If the stop time exceeds the stop

4 MATLAB Interface

4-20

time of the Simulink model, or if it is an out of bounds value such as a negative number, the
recording operation stops when the simulation stops. The recording can be slow.

7 Run the Simulink model. From the Simulation menu, select Mode > Normal, then click
Simulation > Run. Alternatively, if you are using the Simulink 3D Animation default viewer, you
can run the Simulink model with one of the following from the viewer.

• From the menu bar, select the Simulation menu Start option to start the simulation.
• From the toolbar, click Start/pause/continue simulation to start the simulation.
• From the keyboard, press Ctrl+T to start the simulation.

The simulation runs. The Simulink 3D Animation software starts recording when the simulation
time reaches the specified start time. The software creates the file vrplanets_anim_N.wrl in
the current working folder when finished, where N is either 1 or more, depending on how many
file iterations you have.

8 When you are done, stop the simulation. You can use one of the following from the viewer.

• From the menu bar, select the Simulation menu Stop option to stop the simulation.
• From the toolbar, click Stop simulation to stop the simulation.
• From the keyboard, press Ctrl+T to stop the simulation.

9 Close and delete the objects if you do not want to continue using them.

See Also

Related Examples
• “Manual 3-D Recording with MATLAB” on page 4-16
• “Manual 2-D AVI Recording with MATLAB” on page 4-18
• “Scheduled 2-D AVI Recording with MATLAB” on page 4-22
• “Record Animations for Unconnected Virtual Worlds” on page 4-24
• “Play Animation Files” on page 4-27

More About
• “File Name Tokens” on page 4-14

 Scheduled 3-D Recording with MATLAB

4-21

Scheduled 2-D AVI Recording with MATLAB
This topic describes how to schedule the recording of a 2-D animation using the MATLAB interface
for a virtual world that is associated with a Simulink model. You control the animation file recording
by presetting a time interval. The Simulink 3D Animation software records the animation during this
interval in the simulation. In this example, the timing of the recorded animation file derives from the
simulation time. One second of the recorded animation time corresponds to one second of Simulink
time.

This procedure uses the vrplanets example. It describes how to create an .avi animation file name
with the default name format.

1 Run the Simulink model for vrplanets. In the MATLAB window, type

vrplanets

The Simulink model is displayed. Also by default, the Simulink 3D Animation Viewer for that
model is loaded and becomes active. If the viewer is not displayed, double-click the Simulink®
3D Animation block in the Simulink model.

2 To work with the virtual world associated with vrplanets from the MATLAB interface, retrieve
the virtual world handle. Use the vrwhos command. Type

vrwhos

If the result indicates that only one vrworld object is in the workspace, assign its handle directly
to a variable. Type

myworld = vrwho;

If multiple virtual worlds are listed, select which of these virtual worlds you want to manipulate.
To select the virtual world, you can use indexing or a selection method using a string comparison
of virtual world descriptions. For the indexing method, type

worlds = vrwho;
myworld = worlds(1);

For the string comparison method, type

worlds = vrwho;
myworld =
worlds(strcmp('Planets',get(worlds,'Description')));

3 To retrieve the handle to the currently displayed Simulink 3D Animation Viewer figure, type

f=get(myworld,'Figures')
4 To have the Simulink 3D Animation software manually record the animation, set the RecordMode

property to manual. Type

set(myworld,'RecordMode','scheduled');
5 Direct the Simulink 3D Animation software to record the animation as an .avi format file. Type

set(f,'Record2D','on');
6 Select the start and stop times during which you want to record the animation. For example,

enter 5 as the start time and 15 as the stop time.

set(myworld,'RecordInterval',[5 15]);

4 MATLAB Interface

4-22

Ensure that the recording start time value is not earlier than the start time of the Simulink
model; the recording operation cannot start in this instance. If the stop time exceeds the stop
time of the Simulink model, or if it is an out of bounds value such as a negative number, the
recording operation stops when the simulation stops. The recording can be slow.

7 Disable the Navigation Panel. The Navigation Panel appears at the bottom of the virtual scene
view. You can turn off this panel for a cleaner view of the virtual scene. Type

set(f,'NavPanel','none');

8 Ensure that the virtual reality figure window is the topmost window.
9 Run the Simulink model. From the Simulation menu, select Mode > Normal, then click

Simulation > Run. Alternatively, if you are using the Simulink 3D Animation default viewer, you
can run the Simulink model with one of the following from the viewer:

• From the menu bar, select the Simulation menu Start option to start the simulation.
• From the toolbar, click Start/pause/continue simulation to start the simulation.
• From the keyboard, press Ctrl+T to start the simulation.

The simulation runs. The Simulink 3D Animation software starts recording when the simulation
time reaches the specified start time. The software creates the file vrplanets_anim_N.avi in
the current working folder when finished, where N is either 1 or more, depending on how many
file iterations you have.

10 When you are done, stop the simulation. You can use one of the following from the viewer:

• From the menu bar, select the Simulation menu Stop option to stop the simulation.
• From the toolbar, click Stop simulation to stop the simulation.
• From the keyboard, press Ctrl+T to stop the simulation.

11 If you want to enable the navigation panel again, type

set(f,'NavPanel','halfbar');

12 Close and delete the objects if you do not want to continue using them.

See Also

Related Examples
• “Manual 3-D Recording with MATLAB” on page 4-16
• “Manual 2-D AVI Recording with MATLAB” on page 4-18
• “Scheduled 3-D Recording with MATLAB” on page 4-20
• “Record Animations for Unconnected Virtual Worlds” on page 4-24
• “Play Animation Files” on page 4-27

More About
• “File Name Tokens” on page 4-14

 Scheduled 2-D AVI Recording with MATLAB

4-23

Record Animations for Unconnected Virtual Worlds
This topic describes how to record animation files programmatically for virtual worlds that are not
associated with Simulink models (in other words, from the MATLAB interface). In this instance, you
must specify the relationship between the events that change the virtual world state and the time in
the animation file. This requirement is different from virtual worlds associated with Simulink models.
Virtual worlds that are controlled completely from the MATLAB interface have no default, intuitive
interpretation of time relation between MATLAB environment models and virtual scenes.

Note Many engineering time-dependent problems are modeled and solved in MATLAB. For those
problems that have meaningful visual representation, you can create virtual reality models and
animate their solutions. In addition, the offline animation time can represent any independent
variable along which you can observe and visualize a model solution. Using offline animation files can
bring the communication of such engineering problem resolutions to new levels. The Simulink 3D
Animation example vrheat (heat transfer visualization) is an example of a time-dependent problem
modeled and solved in MATLAB. Its modified version, vrheat_anim, shows the use of the
programming technique described in this topic.

To record animation files for virtual worlds that are not associated with Simulink models, note the
following guidelines, which require a strong understanding of the advanced Simulink 3D Animation
software.

• Retrieve the vrworld object handle of the virtual scene that you want to record.
• To record 2-D animations,

1 Retrieve the corresponding vrfigure object. For 2-D animations, the Simulink 3D Animation
software records exactly what you see in the viewer window. Because 2-D animations record
exactly what you see in the Simulink 3D Animation Viewer window, the properties that control
2-D file recording belong to vrfigure objects.

2 Set the Record2D vrfigure property.
3 To override default filenames for animation files, set the vrfigure Record2DFileName

property.
• To create 3-D animation files,

1 Retrieve the corresponding vrworld object.
2 Set the Record3D vrworld property.
3 To override default filenames for animation files, set the vrworld Record3DFileName

property.
• Set the RecordMode vrworld object property to manual or scheduled. For optimal results,

select scheduled.
• If you select scheduled for RecordMode, be sure to set the vrworld RecordInterval property

to a desired time interval.
• To specify that the virtual world time source is an external one, set the vrworld property

TimeSource to external. This setting ensures that the MATLAB software controls the virtual
world scene time. Type

set(virtual_world,'TimeSource', 'external')

4 MATLAB Interface

4-24

• To specify time values at which you want to save animation frames, iteratively set the vrworld
Time property. For a smoother animation, set the time at equal intervals, for example, every five
seconds. Use a sequence like this one:

set(virtual_world,'Time',time_value)

For example, to set the Time property for vrworld, w, with values increasing by 10, enter

set(w,'Time',10);
set(w,'Time',20);
set(w,'Time',30);
set(w,'Time',40);
set(w,'Time',50);
set(w,'Time',60);
set(w,'Time',70);
set(w,'Time',80);
set(w,'Time',90);
set(w,'Time',100);
set(w,'Time',110);
set(w,'Time',120);
set(w,'Time',130);
set(w,'Time',140);

If you select a start time of 60 and a stop time of 120 (as described in “Scheduled 3-D Recording
with MATLAB” on page 4-20), the Simulink 3D Animation software starts recording at 60 and
stops at 120.

Because of the repetitive nature of the time interval setting, set the Time property in a loop from
within a script or program.

• After you set the vrworld Time property, set the virtual scene object properties as necessary. Set
these properties to values that correspond to the given time frame to achieve the desired
animation effect.

• In each time frame, issue the vrdrawnow command for scene changes. This command renders
and updates the scene.

The following code fragment contains a typical loop that iteratively sets the Time property, changes a
virtual scene object property, and calls vrdrawnow to render the scene:

for time=StartTime:Step:StopTime
 % advance the time in the virtual scene
 set(myworld,'Time',time);
 % here we change node properties
 myworld.Car.translation = [time*speed 0 0];
 % render the changed position
 vrdrawnow;
end

If you set the Time property at or outside the end boundary of RecordInterval, the Simulink 3D
Animation software stops recording. You can then view the resulting animation file.

For a complete example of how to perform this kind of animation recording, refer to the Simulink 3D
Animation vrheat_anim example.

 Record Animations for Unconnected Virtual Worlds

4-25

See Also

Related Examples
• “Manual 3-D Recording with MATLAB” on page 4-16
• “Manual 2-D AVI Recording with MATLAB” on page 4-18
• “Scheduled 3-D Recording with MATLAB” on page 4-20
• “Scheduled 2-D AVI Recording with MATLAB” on page 4-22
• “Play Animation Files” on page 4-27

More About
• “File Name Tokens” on page 4-14

4 MATLAB Interface

4-26

Play Animation Files
In this section...
“Play Virtual World Animation Files” on page 4-27
“Play AVI Animation Files” on page 4-28

Play Virtual World Animation Files
You can view virtual world animation files using one of these approaches:

• Open the 3D Animation Player from the MATLAB Toolstrip.

To open the 3D Animation Player from the MATLAB Toolstrip, in the Apps tab, in the Simulation
Graphics and Reporting section, click 3D Animation Player. Select or specify a virtual world
3D animation file.

• From the operating system, locate and double-click the VRML animation file

Double-click the virtual world 3D file. An HTML5-enabled web browser opens with the animation
running. To view the resulting animation file, you must have an HTML5-enabled web browser
installed on your system.

• Use vrplay(filename), where filename is the name of your virtual world 3D file. This
command opens the 3D Animation Player and your file. Using the player, you can control the
playback of your file.

For example, play the animation file based on the vr_octavia example by running
vrplay('octavia_scene_anim.wrl').

vrplay works only with VRML animation files created using the Simulink 3D Animation recording
functionality.

• In the Current Folder pane of MATLAB, double-click the animation file and from the context
menu, select Run.

• At the MATLAB command line, use vrview.

A fourth option is to use the MATLAB command vrview. For example, enter:

w=vrview('vrplanets_anim_1.wrl');
set(w,'TimeSource','freerun');

The vrview command displays the default Simulink 3D Animation Viewer for the animation file.
Setting the TimeSource property of the set method to 'freerun' directs the viewer to advance
its time independent of the MATLAB software.

To stop the animation, type:

set(w,'TimeSource','external');

To close the viewer and delete the world, get the handle of the vrfigure object and close it, as
follows:

f=get(w,'Figures')
close(f);
delete(w);

 Play Animation Files

4-27

Or, to close all vrfigure objects and delete the world, type

vrclose
delete(w);

Play AVI Animation Files
To view an AVI animation file, use one of these approaches:

• Double-click the AVI animation file. The program associated with .avi files in your system (for
example, Windows Media® Player Media Player) opens for the .avi file. If your .avi file is not
yet running, start it now from the application. The animation file runs.

• Use the MATLAB VideoReader function.

See Also
Functions
vrplay | vrview

4 MATLAB Interface

4-28

Build Virtual Reality Worlds

The Simulink 3D Animation product includes tools that you can use to edit and create virtual worlds.
A basic understanding of these tools and how to use them helps you to get started quickly.

• “Choose a Virtual World Editor” on page 5-2
• “Build and Connect a Virtual World” on page 5-8
• “Use Sensors” on page 5-20
• “Detect Object Collisions” on page 5-23
• “Virtual World Data Types” on page 5-30
• “Simulink 3D Animation Textures” on page 5-34
• “Add Sound to a Virtual World” on page 5-35
• “Use CAD Models with the Simulink 3D Animation Product” on page 5-36
• “Import STL and Physical Modeling XML Files” on page 5-38
• “Import 3D Models from CAD Tools” on page 5-40
• “Import VRML Models from CATIA Software” on page 5-45
• “Modify the CAD Model Virtual World” on page 5-51
• “Import Visual Representations of Robot Models” on page 5-54
• “Link to Simulink and Simscape Multibody Models” on page 5-60

5

Choose a Virtual World Editor
The primary way to create a virtual world is with a 3-D editing tool. These tools allow you to create
complex virtual worlds without a deep understanding of the VRML or X3D language. These 3-D
editing tools offer the power and versatility for creating many types of practical and technical models.
For example, you can import 3-D objects from some CAD packages to make the authoring process
easier and more efficient.

There is more than one way to create a virtual world defined with VRML or X3D code. You can use a
virtual world editor to create a virtual world without knowing anything about the VRML or X3D
language. Or you can use a text editor to write code directly.

The Simulink 3D Animation product includes the 3D World Editor for editing virtual worlds. You can
use the 3D World Editor on all supported platforms for Simulink 3D Animation. The 3D World Editor
is the default editor. For a comparison of editors, see “Editors for Virtual Worlds” on page 5-2 .

Editors for Virtual Worlds
As you create a virtual world, you can use different editors for different phases of the process. Choose
the editor that best meets your needs.

Some people prefer to create simple virtual worlds using MATLAB Editor or other text editor.

For Windows platforms, you can also use Ligos V-Realm Builder software to create and edit code. For
information on using V-Realm Builder software with the Simulink 3D Animation product, see “Ligos V-
Realm Builder” on page 5-4.

For details about specifying an editor, see “Set the Default Editor” on page 5-5.

For a description of the benefits and limitations of different types of editors, see the next section.

• “Text Editors” on page 5-2
• “General 3-D Editors” on page 5-3
• “Native VRML and X3D Editors” on page 5-3
• “3D World Editor” on page 5-3

Text Editors

A virtual world 3D file uses a standard text format that you can read with any text editor. Reading the
code in a text editor is useful for debugging and for directly changing the code, and for automated
processing of the code. If you use the correct syntax, you can use the MATLAB Editor or any common
text editor to create virtual worlds.

Consider using a text editor to work on a virtual world when you want to:

• Create a simple virtual world.
• Debug syntax and formatting errors in a virtual world 3D file. Corrupted files do not open in most

3-D tools.
• Learn about VRML and X3D syntax by using VRML and X3D syntax highlighting in the MATLAB

Editor. For details, see “VRML and X3D Syntax Highlighting” on page 5-3.
• Perform global search editing operations across one or more virtual world 3D files.

5 Build Virtual Reality Worlds

5-2

• Combine several virtual world models. Combining models can involve temporary model
inconsistencies, which most 3-D tools cannot handle.

VRML and X3D Syntax Highlighting

You can display VRML, X3DV, and X3D syntax highlighting in the MATLAB Editor.

To set MATLAB Editor properties for VRML and syntax highlighting (for example, the color for
highlighting comments or not using the smart indentation feature):

1 In MATLAB, select Preferences > Editor/Debugger > Language.
2 In the Editor/Debugger Language Preferences dialog box, set the Language field to VRML/X3DV.
3 Change the highlighting properties that you want.

For X3D syntax highlighting, set Language to XML/HTML.

General 3-D Editors

General 3-D editors, such as 3D Studio, SolidWorks®, or Autodesk® Maya, do not use VRML or X3D as
their native format. They export their formats to VRML or X3D. These tools have many features and
are relatively easy to use.

General 3-D editing tools target specific types of work. For example, they can target visual art,
animation, games, or technical applications. They offer different working environments depending on
the application area for which they are designed. Some of these general 3-D editing tools are
powerful, expensive, and complex to learn, but others are relatively inexpensive and can satisfy your
specific needs.

The graphical user interfaces for many of the commercial general 3-D editors use features typical of
the native VRML or X3D editing tools. For example, in addition to displaying 3-D scenes in various
ways, they offer hierarchical tree styles, providing an overview of the model structure and a shortcut
to nodes.

Native VRML and X3D Editors

Native VRML and X3D editors use those languages as their native format. Native VRML editors
support features that are unique to the VRML and X3D format, such as interpolators and sensors.

The Simulink 3D Animation software includes two native VRML and X3D editors:

• “3D World Editor” on page 6-2, which works on all platforms supported for Simulink 3D
Animation product

• The “Ligos V-Realm Builder” on page 5-4, which works on Windows platforms only

3D World Editor

The 3D World Editor is installed as part of the Simulink 3D Animation installation. It is the default
virtual world editor.

The 3D World Editor is a native VRML and X3D authoring tool that provides an interface to the syntax
of those languages. The editor supports VRML97 types and language elements. For details on
limitations, see “VRML Support” on page 1-11and “X3D Support” on page 1-9.

The 3D World Editor interface provides three panes.

 Choose a Virtual World Editor

5-3

• Tree structure pane — View the hierarchy for the virtual world that you are editing. The 3D
World Editor lists the nodes and their properties according to their respective node types. You can
change the nesting levels of certain nodes to modify the virtual world. In the tree viewer, give the
nodes unique names.

• Virtual world display pane — Observe the virtual world as you create it. The 3D World Editor
renders inlined objects (grouped objects). It uses the same renderer as the Simulink 3D Animation
viewer. Using the same renderer for the editor and the viewer provides consistent navigation and
display throughout the development process.

• Object property edit pane — Change values for node items.

For details, see “Build and Connect a Virtual World” on page 5-8 and “3D World Editor” on page 6-
2.

Ligos V-Realm Builder

The Ligos V-Realm Builder interface is available only for Windows operating systems.

The V-Realm Builder application is a flexible, graphically oriented tool for 3-D editing. It provides
similar functionality as the 3D World Editor.

The V-Realm Builder offers these features that the 3D World Editor does not:

• Manipulators — for dragging objects in the 3–D world
• Keyframe animation — animation involving interpolated linear movements

5 Build Virtual Reality Worlds

5-4

Compared to the 3D World Editor, the V-Realm Editor interface:

• Supports only VRML, not X3D
• Provides dialog boxes for editing properties, which can be less streamlined than the 3D World

Editor object properties edit pane
• Does not always render virtual worlds the same way as the viewer
• Does not support rendering inlined objects

For more information about the V-Realm Editor, see “V-Realm Builder Help” on page 2-15.

Set the Default Editor
• “Use Preferences to Set the Default Editor” on page 5-5
• “Use MATLAB Commands to Set the Default Editor” on page 5-6

Tip The Simulink 3D Animation product includes the 3D World Editor for editing virtual worlds. You
can use the 3D World Editor on all supported platforms for Simulink 3D Animation. The 3D World
Editor is the default editor. For a comparison of editors, see “Choose a Virtual World Editor” on page
5-2.

You can change your environment to use another editor. You can use the MATLAB Preferences menu
or the MATLAB command line.

Use Preferences to Set the Default Editor

To determine which virtual world editor is set up as the editor in your environment:

1 From the MATLAB Toolstrip, in the Home tab, in the Environment section, select Preferences
> Simulink 3D Animation.

2 In the Simulink 3D Animation Preferences dialog box, examine the 3D World Editor preference.

 Choose a Virtual World Editor

5-5

You can use the 3D Word Editor preference to select another editor: the V-Realm Builder, the
MATLAB editor, or a third-party virtual world editor or text editor. To use a third-party editor, select
the Custom option. In the text box that appears, enter the path to the editor.

Use MATLAB Commands to Set the Default Editor

1 To determine which editor is installed, at the MATLAB command prompt, type:

vrgetpref('Editor')
2 The default is the 3D World Editor (*BUILTIN). To change the editor, use the vrsetpref

command, specifying the editor that you want. For example, to change to the V-Realm editor,
type:

vrsetpref('Editor','*VREALM')
3 To open a file in the V-Realm editor, in MATLAB navigate to a virtual world file, right-click, and

select Edit.

Note The vredit command opens the 3D World Editor, regardless of the default editor
preference setting.

5 Build Virtual Reality Worlds

5-6

See Also
Functions
vredit | vrgetpref | vrsetpref

Related Examples
• “Set the Default Editor” on page 5-5
• “3D World Editor” on page 6-2
• “Edit a Virtual World” on page 6-11
• “Workflow for Building and Using Virtual Worlds” on page 1-4
• “Install V-Realm Editor” on page 2-14

 Choose a Virtual World Editor

5-7

Build and Connect a Virtual World
In this section...
“Introduction” on page 5-8
“Define the Problem” on page 5-8
“Add a Simulink 3D Animation Block” on page 5-9
“Open a New Virtual World” on page 5-10
“Add Nodes” on page 5-11
“Link to a Simulink Model” on page 5-17

Introduction
This example shows you how to create a simple virtual world using the 3D World Editor. The example
does not show everything that you can do with the editor. However, the example does show you how
to perform some basic tasks to get started.

This example assumes that you have set your default editor to be the 3D World Editor. For details, see
“Set the Default Editor” on page 5-5.

This example describes the steps to build a simplified version of the virtual world that you see if you
enter this command in the MATLAB command window:

edit(vrworld('vrdeform.wrl'))

Define the Problem
Suppose that you want to simulate and visualize in virtual reality the deformation of a sphere. In your
virtual world, you want to have two boxes representing rigid plates (B1, B2) and an elastic sphere (S)
between them. All three of the objects are center-aligned along the x-axis. The boxes B1 and B2 move
toward S with identical velocities, but they move in opposite directions. As they reach the sphere S,
they start to deform it by reducing its x dimension and stretching both its y and z dimensions.

Here is how this virtual world looks:

5 Build Virtual Reality Worlds

5-8

The following table lists the positions and dimensions of the objects that you create for this example.

Object Center Position Dimensions
B1 [3 0 0] [0.3 1 1]
B2 [-3 0 0] [0.3 1 1]
S [0 0 0] r = 0.9

The Simulink 3D Animation product includes the tutorial model vrtut3. This simplified model
simulates the deformation of an elastic sphere. After collision with the rigid blocks, the sphere's x
dimension decreases by a factor from 1 to 0.4. Also, the y and z dimensions expand to keep the
volume of the deformed sphere-ellipsoid constant. Additional blocks in the model supply the correctly
sized vectors to the Simulink 3D Animation block. The simulation stops when the sphere is deformed
to 0.4 times its original size in the x direction.

Your first task is to open a Simulink model and add a Simulink 3D Animation block to your model.

Add a Simulink 3D Animation Block
This procedure uses the Simulink model vrtut3 to show how to add a Simulink 3D Animation block
to your model. The model generates the values for the position of B1, the position of B2, and the
dimensions of S (as described in “Define the Problem” on page 5-8).

1 Open the Tutorial #3. example.

 Build and Connect a Virtual World

5-9

matlab:vrtut3

a At the top of the page that opens, select Open Model.
b Save the vrtut3 file to your MATLAB working folder.

2 In MATLAB, change the current folder to your MATLAB working folder.
3 In the MATLAB Command Window, type:

vrtut3

A Simulink window opens with a model that contains Simulink 3D Animation VR Signal Expander
blocks, but no VR Sink block to write data from the model to Simulink 3D Animation. Instead, this
model uses Scope blocks to monitor temporarily the relevant signals.

4 From the MATLAB Command Window, type

vrlib

The Simulink 3D Animation library opens.
5 From the Library window, drag and drop the VR Sink block to the Simulink diagram. You can

then close the Library Browser window.

Your next task is to create a virtual world that you will associate with the VR Sink block. See “Open a
New Virtual World” on page 5-10.

Open a New Virtual World
You must create a virtual world to connect to a Simulink model for visualizing signals.

This procedure opens a new virtual world, in which you add nodes for visualizing the signals of the
model vrtut3. The connection between the virtual world and the Simulink model requires that the
model includes a VR Sink block, as described in “Add a Simulink 3D Animation Block” on page 5-9.

1 Start the 3D World Editor with an empty virtual world. From the MATLAB Toolstrip, in the Apps
tab, in the Simulation Graphics and Reporting section, click 3D World Editor.

The 3D World Editor displays:

• In the left pane, a virtual scene tree with only a ROOT node

5 Build Virtual Reality Worlds

5-10

• In the right pane, an empty virtual world
• In the bottom pane, an empty pane for editing objects

2 You can save the virtual world at any point. Save the virtual world as vrtut3.wrl in the same
working folder where your vrtut3 file resides. Do not close the 3D World Editor.

Your next two tasks create a virtual world to use with the vrtut3 model:

• “Add Nodes” on page 5-11
• “Build and Connect a Virtual World” on page 5-8

Add Nodes
Create Boxes

Defining virtual world objects involves defining a hierarchy of nodes. This example shows how to
define Transform nodes under the ROOT node, with each Transform node including a hierarchy of
children, Shape, Appearance, Geometry, and specific shape (in this case, a Box) nodes.

1 In the tree in the left pane, click ROOT (the topmost item).
2 Add a Transform node, using the following sequence of menu selections.

3 This Transform node is for the B1 box. To name the Transform node:

a Right-click the Transform node.
b Select the Edit Name menu item.
c In the edit box to the left of the Transform node, type B1.

4 Add a Shape node:

a Expand the B1 Transform node.
b Select the children node.
c Add a Shape node, using the following sequence of menu selections:

 Build and Connect a Virtual World

5-11

5 Add an Appearance node for the Shape node:

a Under the Shape node, select the appearance (SFNode) node.
b Add an Appearance node, using the following sequence of menu selections.

6 Add a Material node to the Appearance node:

a Expand the (Appearance) node and select the material(SFNode) node.
b Add a Material node, using the following sequence of menu selections.

7 Add a Box node to the geometry node:

a Select the geometry(SFNode) node of the (Shape) node.

5 Build Virtual Reality Worlds

5-12

b Add a Box node, using the following sequence of menu selections.

With all the nodes expanded, the 3D World Editor now displays a box in the virtual world
display pane.

8 Make the box smaller by editing its size property:

a Select the size property of the Box node.
b In the object properties edit pane at the bottom of the 3D World Editor, enter 0.3 in the

first column, and 1 in the second and third columns.
c Click Apply.

The box becomes smaller.

 Build and Connect a Virtual World

5-13

9 Move the box to the right by changing the translation(SFVec3f) property of the
B1(Transform) node. In the object properties edit pane, set the first column to 3 and leave
the second and third columns set to 0.

10 Add a second box that is similar to the first box.

a Under the ROOT node, add a Transform node (see step 2) and name it B2 (see step 3).
b Copy the Shape node. Under the B1 Transform node, right-click the Shape node in the B1

Transform node and select the Copy menu item.
c Paste the copied Shape node into the B2 Transform node. Under the B2 Transform

node), right-click the children node and select the Paste Node > Paste menu item.

With the B1 node collapsed and the B2 node expanded, the 3D World Editor looks like the
following graphic.

5 Build Virtual Reality Worlds

5-14

11 Move the box that you created to the left by changing the translation property of the
B2(Transform) node. In the object properties edit pane, set the first column to -3 and leave
the second and third columns set to 0.

Create a Sphere

Your next task is to add a sphere between the two boxes. This section assumes that you have
completed the tasks described in “Add Nodes” on page 5-11.

1 To make it easier to focus the tree structure pane on the nodes that you want to add, collapse
the B1(Transform) and B2(Transform) nodes.

2 In the tree in the left pane, click ROOT node.
3 Add a Sphere node. The 3D World Editor includes a library of objects for building a virtual

world, including a Sphere object.

Add a Sphere library object using the following sequence of menu selections.

 Build and Connect a Virtual World

5-15

From the list of Component Library folders, select the Shapes folder, and then select the
Sphere.wrl file.

4 Select the Transform node and name it S.

With the S Transform node fully expanded and the other Transform nodes collapsed, the 3D
World Editor looks like the following graphic.

5 To make the sphere blue, under the Material node, select the diffuseColor property. In the
object properties edit pane, change the first column value to 0.2, the second column to 1, and
the third column to 1.

6 Save the virtual world file.

5 Build Virtual Reality Worlds

5-16

Your next task is to connect the model outputs to the Simulink 3D Animation block in your Simulink
model. See “Link to a Simulink Model” on page 5-17.

Link to a Simulink Model
After you create a virtual world and a Simulink model with a VR Sink block, define the associations
between the model signals and the virtual world.

Note This procedure uses the model vrtut3 as an example. It assumes that you have opened the
model and that you have added a VR Sink block, and that you have created a virtual world called
vrtut3.wrl. See the tutorial starting with “Add a Simulink 3D Animation Block” on page 5-9.

1 Open the VR Sink Block Parameters dialog box. In the Simulink Editor, double-click the VR Sink
block.

2 Next to the Source file edit box, click Browse.
3 Select vrtut3.wrl, and then click Open.
4 In the Output pane, select Open Viewer automatically. This check box specifies that a viewer

for the virtual world starts when you run the model.
5 For the Description parameter, type vrtut3.
6 In the VR Sink dialog box, click Apply.
7 In the tree structure pane, select the B1 translation, B2 translation, and S scale check

boxes as the nodes that you want to connect to your model signals. Click OK.

The VR Sink block appears with corresponding inputs.
8 Delete the three Scope blocks and their associated input signal lines.
9 Connect the input lines from the two VR Signal Expander blocks and S Scaling in XYZ block

to the appropriate ports in the VR Sink block.

10 Double-click the VR Sink block.

The viewer appears.
11 In the viewer, select the Simulation > Block Parameters option. Your default viewer opens and

displays the virtual world. For more information on changing your default viewer, see “Set the
Default Viewer” on page 2-2.

 Build and Connect a Virtual World

5-17

12 In the VR Sink Block Parameters dialog box, click the View button.

13 In the Simulink Editor, select Simulation > Run.

In your default viewer, you see a 3-D animation of the scene. Using the viewer controls, you can
observe the action from various points.

When the width of the sphere is reduced to 0.4 of its original size, the simulation stops running.

5 Build Virtual Reality Worlds

5-18

This example shows you how to create and use a simple virtual reality model. Using the same method,
you can create more complex models for solving the particular problems that you face.

See Also
Functions
vredit | vrlib | vrjoystick | vrspacemouse | vrgetpref | vrsetpref

Blocks
VR Sink | VR Source

Related Examples
• “Virtual Reality World and Dynamic System Examples” on page 1-16
• “Workflow for Building and Using Virtual Worlds” on page 1-4
• “Edit a Virtual World” on page 6-11
• “Connect Virtual Worlds and Models” on page 3-2
• “Display Virtual World and Start Simulation” on page 3-10

 Build and Connect a Virtual World

5-19

Use Sensors
To interact with the simulation of a model based on user actions or events occurring in the virtual
world, you can use virtual reality sensors.To move graphics objects around in a virtual world during
simulation or to change their appearance, based on user actions or events, you can:

1 Define a sensor node, which generates events and output values depending on time, navigation,
and actions and distance changes in the scene. For example, a TouchSensor node tracks the
location and state of the pointing device. The sensor detects when you point at the geometry
contained by the TouchSensor node parent group. See “Add Sensors to Virtual Worlds” on page
5-20.

2 Add a VR Source block and select the sensor properties to read. See “Read Sensor Values Using
MATLAB” on page 4-7.

Note Instead of using a VR Source block to read sensor values, you can write an S-function or
use a MATLAB Function block.

If you are working in MATLAB, you can read sensor values using vrnode object properties.
3 Read sensor values using a VR Source block, whose outputs can be used to drive simulation

behavior.

Add Sensors to Virtual Worlds
You can set up an interface in a Simulink block diagram to sensors in a virtual reality scene. You can
also input signals programmatically from the virtual world into a simulation model.

Virtual reality scenes can contain sensors, which are nodes that generate events and output values
depending on time, navigation, and actions and distance changes in the scene. These nodes add
interactivity to the virtual world. The virtual world sensors resemble real world sensors, such as
ultrasonic, lidar, and touch sensors. You can use Simulink 3D Animation functions to read sensor field
values into simulation models and control simulation based on the user interaction with the virtual
scene.

Ways you can use sensors include:

• Use sensor data from a virtual world to control a simulation.
• Provide interactivity between user navigation and interaction in a virtual world and the simulation

of the model.
• Have a simulation react to virtual world events, such as time ticks or outputs from scripts.
• Use static information from the virtual world, such as the size of a box, to control a simulation.

You can use collision detection to accurately model physical constraints of objects in the real world,
where generally two objects cannot be in the same place at the same time. You can use collision
detection node outputs to:

• Change the state of other virtual world nodes.
• Apply MATLAB algorithms to collision data.
• Drive Simulink models.

5 Build Virtual Reality Worlds

5-20

For example, you can use geometric sensors for robotics modeling. For more information, see “Detect
Object Collisions” on page 5-23.

You can define these sensors in a scene.

Sensors Description
CylinderSensor Maps pointer motion (for example, a mouse) into a rotation on an invisible

cylinder that is aligned with the y-axis of the local coordinate system.
PlaneSensor Maps pointing device motion into two-dimensional translation in a plane

parallel to the z=0 plane of the local coordinate system.
ProximitySensor Generates events when the viewer enters, exits, and moves within a region

in space (defined by a box)
SphereSensor Maps pointing device motion into spherical rotation about the origin of the

local coordinate system
TimeSensor Generates events as time passes
TouchSensor Tracks the location and state of the pointing device and detects when you

point at geometry contained by the TouchSensor node parent group.
VisibilitySensor Detects visibility changes of a rectangular box as you navigate the world.
PointPickSensor Uses point clouds to detect which of the points are inside colliding

geometries
LinePickSensor Uses ray fans or other sets of lines that detect the distance to the colliding

geometries
PrimitivePickSens
or

Primitive geometries (such as a cone, sphere, or box) that detect colliding
geometries

Read Sensor Values
You can read values from sensor nodes in a virtual world by using:

• VR Source blocks on page 5-21
• S-Functions or MATLAB Function blocks on page 5-22
• vrnode

Read Sensor Values Using VR Source Blocks

You can use the VR Source block for interactivity between a user navigating the virtual world and the
simulation of a Simulink model. The VR Source block registers user interactions with the virtual
world and passes that data to the model to affect the simulation of the model. The VR Source block
reads the values from the virtual world fields specified in the Block Parameters dialog box and inputs
them to a model.

For example, you can specify setpoints (the desired positions) in the virtual world, so that a user can
specify the location of a virtual world object interactively. The simulation then responds to the
changed location of the object. The VR Source block can read into the model events from the virtual
world, such as time ticks or outputs from scripts. The VR Source block can also read into the model
static information about the virtual world (for example, the size of a box defined in the virtual world
3D file).

For examples that use a VR Source block, see Virtual Control Panel and Magnetic Levitation Model.

 Use Sensors

5-21

Read Sensor Values Using S-Functions

To use the setpoint value in a Simulink model, you can write an S-function or a MATLAB Function
block that reads the sensor output periodically. This example uses an S-function.

1 Right-click the VR Sensor Reader block of Magnetic Levitation Model (vrmaglev) model and
select Mask > Look Under Mask.

The vrmaglev/VR Sensor Reader model displays. This model contains the vrextin block,
which is an S-function block. The vrextin S-function synchronizes the sensor field in the setup
method and periodically reads its value in the mdlUpdate method.

2 Examine the S-function parameters. Right-click vrextin and select S-Function Parameters.

The parameters defined in the mask supply the sample time, virtual world, and the node and field
to read.

Notes About the vrextin S-Function

• Instead of setting its own block outputs, the vrextin S-function sets the value of the adjacent
Constant block value_holder. This setting makes the VR Sensor Reader block compatible with
Simulink Coder code generation so that the model can run on Simulink Coder targets.

• The signal loop between user action (moving the ball to a desired position using a mouse) closes
through the associated Simulink model vrmaglev. Grabbing the ball and moving it to a new
position works only when the model is running and when the model sets the blue selection method
switch to the virtual reality sensor signal path. To experience the behavior of the PlaneSensor
using the virtual scene only, save the maglev.wrl file under a new name. Remove the comment
symbol (#) to enable the last line of this file. These actions activate direct routing of sensor output
to a ball translation. Then you can experiment with the newly created scene instead of the original
maglev.wrl world.

ROUTE Grab_Sensor.translation_changed TO Ball.translation

• You can use this approach to input information from all node fields of the type exposedField or
eventOut, not only a Sensor eventOut field. See VRML Data Class Types on page 5-32 for more
information about virtual world data class types.

• For fields of class exposedField, you can use an alternate name using the field name with the
suffix, _changed. For example, translation and translation_changed are alternate names
for requesting the translation field value of the Grab_Sensor node.

See Also
Blocks
VR Sink | VR Source

Related Examples
• “Connect Virtual Worlds and Models” on page 3-2
• “Detect Object Collisions” on page 5-23
• “Input Virtual World Data to a Model” on page 3-6

5 Build Virtual Reality Worlds

5-22

Detect Object Collisions
You can use collision detection to model physical constraints of objects in the real world accurately, to
avoid having two objects in the same place at the same time. You can use collision detection node
outputs to:

• Change the state of other virtual world nodes.
• Apply MATLAB algorithms to collision data.
• Drive Simulink models.

For example, you can use geometric sensors for robotics modeling. For examples of using collision
detection, see vrcollisions and vrmaze.

Set Up Collision Detection
To set up collision detection, define collision (pick) sensors that detect when they collide with
targeted surrounding scene objects. The virtual world sensors resemble real-world sensors, such as
ultrasonic, lidar, and touch sensors. The Simulink 3D Animation sensors are based on X3D sensors
(also supported for VRML), as described in the X3D picking component specification. For descriptions
of pick sensor output properties that you can access with VR Source and VR Sink blocks, see “Use
Collision Detection Data in Models” on page 5-25.

• PointPickSensor — Point clouds that detect which of the points are inside colliding geometries
• LinePickSensor — Ray fans or other sets of lines that detect the distance to the colliding

geometries
• PrimitivePickSensor — Primitive geometries (such as a cone, sphere, or box) that detect

colliding geometries

To add a collision detection sensor, use these general steps. For an example that reflects this
workflow, see vrcollisions.

1 In the 3D World Editor tree structure pane, select the children node of the Transform node to
which you want to add a pick sensor.

2 To create the picking geometry to use with the sensor, add a geometry node. Select Nodes >
Add > Geometry and select a geometry appropriate to the type of pick sensor (for example,
Point Set).

3 Add a pick sensor node by selecting Nodes > Add > Pick Sensor Node.
4 In the sensor node, right-click the pickingGeometry property and select USE. Specify the

geometry node that you created for the sensor.
5 Also in the sensor node, right-click the pickingTarget property and select USE. Specify the

target objects for which you want the sensor to detect collisions.

Instead of specifying the picking geometry with a USE, you can define the picking geometry
directly. However, the directly defined geometry is invisible.

6 Optionally, change default property values or specify other values for sensor properties. For
information about the intersectionType, see “Sensor Collisions with Multiple Object Pick
Targets” on page 5-24. For descriptions of output properties that you can access with a VR
Source block, see “Use Collision Detection Data in Models” on page 5-25.

 Detect Object Collisions

5-23

https://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/picking.html

Here is an example of the key nodes for defining a collision detection sensor for the robot in the
vrcollisions virtual world:

• The Robot_Body node has the Line_Set node as one of its children. The Line_Set node defines
the picking geometry for the sensor.

• The Collision_Sensor defines the collision detection sensor for the robot. The sensor node
pickingGeometry specifies to use the Line_Set node as the picking geometry and the
Walls_Obstacles node as the targets for collision detection.

Sensor Collisions with Multiple Object Pick Targets

To control how a pick sensor behaves when it collides with a pick target geometry that consists of
multiple objects, use the intersectionType property. Possible values are:

• GEOMETRY – The sensor collides with union of individual bounding boxes of all objects defined in
the pickTarget field. In general, this setting produces more exact results.

• BOUNDS – (Default) The sensor collides with one large bounding box construed around all objects
defined in the pickTarget field.

In the vrcollisions example, the LinePickSensor has the intersectionType field set to
GEOMETRY. This setting means that the sensor that is inside the colliding geometry (consisting of the
room walls), does not collide with the union of walls. A collision takes place only if sensor rays touch
any of the walls. If the intersectionType is set to BOUNDS, collision detection works only for a
sensor that approaches the room from the outside. The whole room is wrapped into one large
bounding box that interacts with the sensor.

Make Picking Geometry Transparent

You can make the picking geometry used for a pick sensor invisible in the virtual world. For the
picking geometry, in its Material node, set the Transparency property to 1. For example, in the

5 Build Virtual Reality Worlds

5-24

vrcollisions virtual world, for the Collision_Sensor picking geometry node (Line_Set), in the
Materials node, change the Transparency property to 1.

Avoid Impending Collisions

To avoid an impending collision (before the collision actually occurs), you can use the pickedRange
output property for a LinePickSensor. As part of the line set picking geometry, define one or more
long lines that reflect your desired amount of advance notice of an impending collision. You can make
those lines transparent. Then create logic based on the pickedRange value.

Use Collision Detection Data in Models
The isActive output property of a sensor becomes TRUE when a collision occurs. To associate a
model with the virtual reality scene, you can use a VR Source block to read the sensor isActive
property and the current position of the object for which the sensor is defined. You can use a VR Sink
block to define the behavior of the virtual world object, such as its position, rotation, or color.

For example, the VR Source block in the top left of the vrcollisions Simulink model gets data from
the associated virtual world.

In the model, select the VR Source block, and then in the Simulink 3D Animation Viewer, select
Simulation > Block parameters. This image shows some of the key selected properties.

 Detect Object Collisions

5-25

For the LinePickSensor PointPickSensor, and PrimitivePickSensor, you can select these
output properties for a VR Source block:

• enabled – Enables node operation.

Note The enabled property is the only property that you can select with a VR Sink block.
• isActive – Indicates when the intersecting object is picked by the picking geometry.
• pickedPoint – Displays the points on the surface of the underlying PickGeometry that are

picked (in local coordinate system).
• pickedRange – Indicates range readings from the picking. For details, see “Avoid Impending

Collisions” on page 5-25.

For a PointPickSensor, you can select the enabled, isActive, and pickedPoint outputs. For
the PrimitivePickSensor, you can select the enabled and isActive outputs.

The Robot Control subsystem block includes the logic to change the color and position of the
robot.

Based on the Robot Control subsystem output, the VR Sink block updates the virtual world to
reflect the color and position of the robot.

5 Build Virtual Reality Worlds

5-26

Tip Consider adjusting the sample time for blocks for additional precision for collision detection.

Use Collision Detection in MATLAB
You can use collision detection in a virtual world that you define in MATLAB. This example is based on
the vrcollisions virtual world. It does not use a Simulink model.

1 Open and view the vrcollisions virtual world.

w = vrworld('vrcollisions');
open(w);
fig = view(w, '-internal');

2 Get the collision sensor and robot nodes of the virtual world.

col = vrnode(w,'Collision_Sensor')
rob = vrnode(w,'Robot')
color = vrnode(w,'Robot_color')

3 Move the robot, based on collision detection (when the isActive property is TRUE). At the
default position, no collision is detected.

col.isActive

for ii = 1:30

 % Move robot
 rob.translation = rob.translation + [0.05 0 0];
 vrdrawnow

 % If collision is detected, change color to red.
 if col.isActive
 color.diffuseColor = [1 0 0];
 end

end

Use Collision Detection Data in Virtual Worlds
You can use collision detection to manipulate virtual world objects, independently of a Simulink model
or a virtual world object in MATLAB.

The vrmaze virtual world defines two green IndexedLineSet pick sensors (Sensor1 and Sensor2)
for the purple robot (Robot node).

 Detect Object Collisions

5-27

The VRML code includes ROUTE nodes for each of the pick sensors.

The ROUTE nodes use logic defined in a Script node called ChangeColor.

See Also
Blocks
VR Sink | VR Source

5 Build Virtual Reality Worlds

5-28

Related Examples
• “Add Sensors to Virtual Worlds” on page 5-20
• “Connect Virtual Worlds and Models” on page 3-2

 Detect Object Collisions

5-29

Virtual World Data Types

In this section...
“Field Data Types” on page 5-30
“Virtual World Data Class Types” on page 5-32

Nodes use VRML and X3D virtual world data types to define objects and the types of data that can
appear in the node fields and events.

This section explains these field data types and data class types.

Field Data Types
The Simulink 3D Animation product provides an interface between the MATLAB and Simulink
environment and virtual reality scenes. With this interface, you can set and get the scene node field
values. Working with these values requires that you understand the relationship between virtual
world data types and the corresponding MATLAB data types. The following table illustrates the
virtual world data types and how they are converted to and from MATLAB types.

For a detailed description of the VRML fields, refer to the VRML97 Standard.

You can use MATLAB commands to read and save X3D files and to associate X3D files with Simulink
models. For additional information about X3D support in Simulink 3D Animation, see “X3D Support”
on page 1-9.

For information about the supported X3D specification, see ISO/IEC 19775-1:2013. For information
about supported X3D encoding, see ISO/IEC 19776-1.3:201x and ISO/IEC 19776-2.3:201x.

VRML Type Description Simulink 3D Animation Type
SFBool Boolean value true or false. logical
SFFloat 32–bit, floating-point value. single
SFInt32 32–bit, signed-integer value. int32
SFTime Absolute or relative time value. double
SFVec2f Vector of two floating-point values

that you usually use for 2-D
coordinates. For example, texture
coordinates.

Single array (1-by-2)

SFVec3f Vector of three floating-point values
that you usually use for 3-D
coordinates.

Single array (1-by-3)

SFColor Vector of three floating-point values
you use for RGB color specification.

Single array (1-by-3)

SFRotation Vector of four floating-point values
you use for specifying rotation
coordinates (x, y, z) of an axis plus
rotation angle around that axis.

Single array (1-by-4)

5 Build Virtual Reality Worlds

5-30

https://www.web3d.org/documents/specifications/19775-1/V3.3/
https://www.web3d.org/documents/specifications/19776-1/V3.3/index.html
https://www.web3d.org/documents/specifications/19776-2/V3.3/index.html

VRML Type Description Simulink 3D Animation Type
SFImage Two-dimensional array represented

by a sequence of floating-point
numbers.

uint8 array (n-by-m-by-3)

SFString String in UTF-8 encoding.
Compatible with ASCII, allowing you
to use Unicode® characters.

char

SFNode Container for a node. vrnode
MFFloat Array of SFFloat values. Single array (n-by-1)
MFInt32 Array of SFInt32 values. int32 array (n-by-1)
MFVec2f Array of SFVec2f values. Single array (n-by-2)
MFVec3f Array of SFvec3f values. Single array (n-by-3)
MFColor Array of SFColor values. Single array (n-by-3)
MFRotation Array of SFRotation values. Single array (n-by-4)
MFString Array of SFString values. char array (n-by-1)
MFNode Array of SFNode values. vrnode

The Simulink 3D Animation software can work with various MATLAB data types, converting them if
necessary:

• The inputs for the setfield function (and its dot notation form) and VR Sink and VR Source
blocks, accept all meaningful data types on input. Both convert the data types into natural virtual
world types as necessary. The data types include logicals, signed and unsigned integers, singles,
and doubles.

• The getfield function and its dot notation form return their natural data types according to the
table above.

To ensure backward compatibility with existing models and applications, use the Simulink 3D
Animation vrsetpref function to define the data type support. Their names are as follows:

Property Description
DataTypeBool Specifies the boolean data type for vrnode/setfield and vrnode/

getfield. Valid values are 'logical' and 'char'. If set to 'logical',
the virtual world boolean data type is returned as a logical value. If set to
'char', the virtual world boolean data type is returned 'on' or 'off'.

DataTypeInt32 Specifies the int32 data type for vrnode/setfield and vrnode/
getfield. Valid values are 'int32' and 'double'. If set to 'int32',
the virtual world int32 data type is returned as int32. If set to
'double', the virtual world int32 data type is returned as 'double'.

DataTypeFloat Specifies the float data type for vrnode/setfield and vrnode/
getfield. Valid values are 'single' and 'double'. If set to 'single',
the virtual world float and color data types (the types of most virtual
world fields) are returned as 'single'. If set to 'double', the virtual
world float and color data types are returned as 'double'.

 Virtual World Data Types

5-31

Virtual World Data Class Types
A node can contain four classes of data: field, exposedField, eventIn, and eventOut. These
classes define the behavior of the nodes, how nodes are stored in memory, and how they can interact
with other nodes and external objects.

VRML Data Class Description
eventIn An event that the node can receive
eventOut An event that the node can send
field A private node member, holding node data
exposedField A public node member, holding node data

eventIn

Usually, eventIn events correspond to a field in the node. Node fields are not accessible from
outside the node. The only way you can change them is by having a corresponding eventIn.

Some nodes have eventIn events that do not correspond to any field of that node, but provide
additional functionality for it. For example, the Transform node has an addChildren eventIn.
When this event is received, the child nodes that are passed are added to the list of children of a
given transform.

You use this class type for fields that are exposed to other objects.

eventOut

This event is sent whenever the value of a corresponding node field that allows sending events
changes its value.

You use this class type for fields that have this functionality.

field

A field can be set to a particular value in the virtual world 3D file. Generally, the field is private to the
node and its value can be changed only if its node receives a corresponding eventIn. It is important
to understand that other nodes or the external authoring interface cannot change the field.

You use this class type for fields that are not exposed and do not have the eventOut functionality.

exposedField

This powerful data class serves many purposes. You use this class type for fields that have both
eventIn and eventOut functionality. The alternative name of the corresponding eventIn is always
the field name with a set_ prefix. The name of the eventOut is always the field name with a
_changed suffix.

The exposedField class defines how the corresponding eventIn and eventOut behave. For all
exposedField classes, when an event occurs, the field value is changed, with a corresponding
change to the scene appearance, and an eventOut is sent with the new field value. These changes
allow the chaining of events through many nodes.

The exposedField class is accessible to scripts, whereas the field class is not.

5 Build Virtual Reality Worlds

5-32

See Also

More About
• “Virtual Reality Modeling Language (VRML)” on page 1-11
• “X3D Support” on page 1-9
• “Simulink 3D Animation Textures” on page 5-34

 Virtual World Data Types

5-33

Simulink 3D Animation Textures
The following are texture file recommendations for Simulink 3D Animation models:

• Where possible, scale source texture files to a size equal to a power of 2 in both dimensions. Doing
so ensures optimal performance for the Simulink 3D Animation viewer. If you do not scale the
files, the Simulink 3D Animation viewer can attempt to descale the image or create textures with
undesired resolutions.

• Use source texture files whose size and detail are no more than what you need for your
application.

• Where possible, use the Portable Network Graphics (PNG) format as the static texture format. You
can also use the GIF and JPG graphic formats.

• For movie textures, use the MPEG format. For optimal performance, be sure to scale source
texture files to a size equal to the power of 2 in both dimensions.

See Also

More About
• “Virtual Reality Modeling Language (VRML)” on page 1-11
• “X3D Support” on page 1-9
• “Virtual World Data Types” on page 5-30

5 Build Virtual Reality Worlds

5-34

Add Sound to a Virtual World
To add sound to a virtual world, use a Sound node. You can include an AudioClip node in a Sound
node. For an AudioClip node, use a mono or stereo WAV file in uncompressed PCM format.

To listen to the sound, use a computer that supports sound. For details, see “Listen to Sound in a
Virtual World” on page 7-43.

Note A stereo sound source retains its channel separation during playback. Simulink 3D Animation
attenuates the sound based on the distance of the viewer from the sound location. The relative
position of the viewer to the sound location and the viewer direction in the virtual world do not affect
the stereo channels. There is no impact even if the Sound node has the spatialize field set to
true.

The following code adds to a virtual world a sound that switches on and off based on a logical signal.

DEF SoundSwitch Switch {
 choice [
 DEF MySound Sound {
 source DEF CraneNoise AudioClip {
 url "sound/crane_run.wav"
 loop TRUE
 }
 }
]
}

See Also

Related Examples
• “Listen to Sound in a Virtual World” on page 7-43

 Add Sound to a Virtual World

5-35

Use CAD Models with the Simulink 3D Animation Product
In this section...
“Use of CAD Designs” on page 5-36
“Import CAD Designs” on page 5-36
“Integrate the Imported Model Virtual World” on page 5-36

Note These topics assumes that the reader has a moderate knowledge of the Simulink 3D Animation
product. For VRML-specific information, such as the description of nodes and their fields, refer to the
VRML97 standard.

Use of CAD Designs
When you work with models of dynamic systems, often it is helpful to visualize them in a three-
dimensional virtual reality environment. If most of the 3D designs in your organization are created
using CAD tools, convert these designs into forms that you can be use with:

• Simulink models
• Simscape Multibody models
• MATLAB models

To adapt existing CAD designs for visualization using the Simulink 3D Animation software:

• Import CAD designs
• Integrate the virtual world created from the imported CAD model into the Simulink 3D Animation

environment.

Import CAD Designs
You can use the following techniques to import CAD designs for use in the Simulink 3D Animation
product:

• Import STL and Physical Modeling file directly
• Import VRML models from CAD tools
• Import VRML models from CATIA® software

Integrate the Imported Model Virtual World
After you import the CAD model, use the Simulink 3D Animation software to modify the resulting
virtual world so that you can use it effectively. Also, create associations between the virtual world and
Simulink and Simscape Multibody models.

See Also
Functions
stl2vrml | vrcadcleanup | vrphysmod

5 Build Virtual Reality Worlds

5-36

Related Examples
• “Import STL and Physical Modeling XML Files” on page 5-38
• “Import 3D Models from CAD Tools” on page 5-40
• “Import VRML Models from CATIA Software” on page 5-45
• “Modify the CAD Model Virtual World” on page 5-51
• “Link to Simulink and Simscape Multibody Models” on page 5-60

 Use CAD Models with the Simulink 3D Animation Product

5-37

Import STL and Physical Modeling XML Files
CAD models frequently use STL (STereoLithography) format files or Physical Modeling XML files.

You can use the 3D World Editor to import STL and Physical Modeling XML files directly into a VRML
virtual scene. You can integrate content from those files into a virtual world, converting the structure
into VRML.

Note You cannot use the 3D World Editor to import STL and Physical Modeling XML files directly
into an X3D virtual scene.

To import an STL or Physical Modeling XML file:

1 In the 3D World Editor, select the Root node or an MFNode node (usually the children node of
a Transform or Group node).

2 From the Nodes > Import From menu item, select either STL File or Physical Modeling XML
File.

Tip Alternatively, you can right-click the Root node or an MFNode node and use the Import
From menu item. To insert the new node in the middle of a node list, after the selected node, use
the Nodes > Import From menu path.

Note To import a Physical Modeling XML file, the target folder must be writable.

Alternatively, you can use the stl2vrml function.

Results
Importing an STL file creates a Transform node containing a Shape node with IndexedFaceSet
geometry that represents the original STL shape. The new Transform is create in one of these
locations:

• At the main level of the scene hierarchy (at the end of the file)
• As a child of a selected grouping node

Importing a Physical Modeling XML file creates an individual VRML file for each STL file that the
XML file references. The created VRML files are stored in the folder where the edited VRML file is
located.

In the edited VRML file, the newly created Transform contains hierarchical structure Transforms
that correspond to the structure of objects described in the XML file. Individual VRML shape files in
this structure are referenced using Inline nodes.

Note When importing a Physical Modeling XML file into a new, unsaved VRML model, children
VRML files are created in the current working folder. If you save the file into a different folder, move
the referenced VRML files to the new location.

5 Build Virtual Reality Worlds

5-38

See Also

Related Examples
• “Use CAD Models with the Simulink 3D Animation Product” on page 5-36
• “Import 3D Models from CAD Tools” on page 5-40
• “Import VRML Models from CATIA Software” on page 5-45
• “Modify the CAD Model Virtual World” on page 5-51
• “Link to Simulink and Simscape Multibody Models” on page 5-60

 Import STL and Physical Modeling XML Files

5-39

Import 3D Models from CAD Tools
In this section...
“Level of Detail Considerations” on page 5-40
“Units Used in Exported Files” on page 5-40
“Coordinate System Used” on page 5-41
“Assembly Hierarchy” on page 5-41

To import models from CAD tools, convert your product assembly model into the X3D format used by
the Simulink 3D Animation software. Most CAD tools have X3D export filters. If the export filter is not
directly available in the CAD tool, you can use conversion utilities available from third parties.

When exporting CAD models into the X3D format, you can set several options to customize the
output. You can set options that are specific to the export filters or are general CAD file properties.
Consult your CAD system documentation for specific details on how to set these properties. Some of
the most typical and useful CAD file properties are:

• Level of Detail Considerations
• Units Used in Exported Files
• Coordinate System Used
• Assembly Hierarchy

Level of Detail Considerations
Usually CAD models are parametric models that use proprietary object rendering methods to handle
various contexts. During model export, the internal parametric model of the assembly is tessellated.
In this process, the model surface is divided into triangular meshes, represented by the
IndexedFaceSet nodes. Before tesselation, set the granularity of the mesh so that it is suitable for
further use. Modifying the polygon count later is not practical. The resolution independent
information of the object shape and structure is lost and cannot be reconstructed based on the
tessellated model.

For effective rendering of moving parts, keep virtual world models as simple as possible, with
minimal visible model degradation. Find the appropriate compromise between these two
requirements.

Computers and graphic accelerators have a range of performance levels, so there is no firm
recommendation for the number of polygons or triangles suitable for use. To assess the complexity of
a model, you can display the resulting virtual world 3D file in the Simulink 3D Animation viewer and
observe the viewer response to navigation. If you can navigate the virtual world without any
significant delays, the model is suitable for further work. If you connect the virtual world to a
Simulink model, you have access to more precise measures of suitability. For example, you can find
the number of frames rendered per second during simulation.

Units Used in Exported Files
X3D length units are in meters. To scale exported parts correctly in the virtual world, export the parts
using meters. If the exported objects are small or large, consider creating your virtual world in some
other scale. In this case, export the objects using units other than meters.

5 Build Virtual Reality Worlds

5-40

Virtual reality viewers measure using dimensions that are comparable to the dimensions of people, to
achieve the immersion effect of virtual reality. Viewers assume that you prepared the scene so that it
can be walked through or examined by a virtual visitor to the scene (an avatar). The physical
dimensions of the avatar are used in calculations for purposes like collision detection, near-object
clipping, or terrain following. To customize avatar dimensions and other navigation-specific
parameters such as default navigation speed), use the NavigationInfo node. The Simulink 3D
Animation viewer enables effective navigation in the virtual world, including scaled scenes. For
example, you can use the viewer to inspect miniature objects or to visualize a large-scale aircraft
operation in space.

Coordinate System Used
X3D uses a Cartesian coordinate system with axes defined so that:

• +x points right
• +y points up
• +z points out of the screen

To avoid transforming object axes into the virtual world system later on, whenever possible, export
CAD models using an identical coordinate system. If your CAD tool uses a different coordinate system
and does not allow you to change it for the exported objects, note the system differences. Then
implement axes transformations in your model later.

For example, if you export a vehicle model so that it points towards the +x axis on a road in the
virtual world:

• Make the road also point towards the +x direction.
• Use the x coordinate for the model of vehicle dynamics.
• Make a note of the orientation of the parts in the coordinate system.

When the CAD tool allows you to animate parts and assemblies, reset their positions to the initial
state before the export.

Assembly Hierarchy
The export of assembly of parts varies based on the structure of the model, which usually comes in
two forms:

• All parts are independent from each other, or objects in the scene are independent from each
other at the same level of the scene hierarchy. The exported virtual world 3D file has a flat
structure, with all part coordinates defined in global coordinates.

• Parts follow a hierarchy defined in the CAD tool. The exported virtual world 3D file uses this
hierarchy via the Transform-children mechanism, to create a nested structure. In this case,
usually part coordinates are defined in the local coordinate system of the parent of the part.

For example, you can export a robot with the following object hierarchy. The coordinates of each
part are defined in the local coordinate system of the parent:

rotating support — arm — wrist — hand — tool

When the rotating support moves, all other parts are designed to move with it.

 Import 3D Models from CAD Tools

5-41

The hierarchy of the virtual world 3D file must correspond to the coordinates used in the dynamic
model of the assembly as follows:

• If all parts in the Simulink or Simscape Multibody model are defined in global coordinates, use a
flat virtual world structure.

• If all parts in the Simulink or Simscape Multibody model follow hierarchical relationships, use a
nested virtual world structure.

To illustrate these two cases, imagine a rotating pendulum. As the gray arm rotates about the vertical
axis, the orange pendulum swings about the z axis in local coordinates of the rotating gray arm.

If the pendulum dynamics model uses global coordinates for all moving parts, the virtual world model
has a flat structure.

Here is the code for the flat structure.

5 Build Virtual Reality Worlds

5-42

If the pendulum dynamics model uses local coordinates for moving parts, the corresponding virtual
world model has a nested structure.

Here is the code for the nested structure.

 Import 3D Models from CAD Tools

5-43

Some third-party tools allow you to export each part of the assembly into separate virtual world 3D
files. All parts are then referenced in one main file using the Inline mechanism. Referencing in this
manner is the recommended way to work with assemblies, as the main file is small and easy to
understand and modify.

See Also
Functions
stl2vrml | vrcadcleanup | vrphysmod

Related Examples
• “Use CAD Models with the Simulink 3D Animation Product” on page 5-36
• “Import STL and Physical Modeling XML Files” on page 5-38
• “Import VRML Models from CATIA Software” on page 5-45
• “Modify the CAD Model Virtual World” on page 5-51
• “Link to Simulink and Simscape Multibody Models” on page 5-60

5 Build Virtual Reality Worlds

5-44

Import VRML Models from CATIA Software
In this section...
“CATIA Coordinate Systems” on page 5-45
“Settings That Affect the VRML Output” on page 5-45
“Level of Detail” on page 5-46
“VRML Export Filter Settings” on page 5-46
“VRML Models Exported from the CATIA Environment” on page 5-46
“Adjust the Resulting VRML Files” on page 5-48

You can use CAD designs created in the CATIA product to create Simulink 3D Animation virtual
reality scenes. CATIA models are hierarchical trees comprised of products that contain parts.

To export CATIA parts or products to the VRML format, in the CATIA dialog box, select File > Save
as and select VRML in the Save as type list.

Note You cannot use the Simulink 3D Animation to import CATIA models to X3D files in Simulink 3D
Animation.

When exporting products, the CATIA software creates one compound VRML file that contains all the
parts of the product.

To export each part of the assembly hierarchy into a separate VRML file, in the CATIA environment:

1 Save each part individually to a separate virtual world 3D file.
2 Create the main model virtual world 3D file manually, with Inline references to the part files.

CATIA Coordinate Systems
Also, the CATIA software exports background color and viewpoints. The software exports individual
parts without these properties.

By default, the CATIA software uses right-handed Cartesian coordinate system, identical to the
MATLAB coordinate system on page 1-12. Account for the coordinate system when you export objects
from the CATIA environment into virtual worlds. Also account for the coordinate system when you
manipulate exported objects using the Simulink 3D Animation software.

You can also define a different coordinate system. Within the current geometrical set, create an axis
system. Doing so sets this new system as a reference system that you can use to export the VRML
virtual world. Consider creating such an axis system so that it corresponds to the virtual world
coordinate system. This approach makes all the coordinates and orientations of objects compatible
with other objects you combine into virtual worlds. See “Virtual World Coordinate System” on page 1-
12.

Settings That Affect the VRML Output
In the CATIA environment, the properties that affect the VRML output are available in two options
dialog boxes:

 Import VRML Models from CATIA Software

5-45

• Display Performances dialog box
• VRML Compatibility dialog box

Level of Detail
The level of detail of the exported VRML file (accuracy of the tessellation mesh of objects)
corresponds to the setting of CATIA general visualization mesh. In the CATIA menu, select Tools >
Options > General > Display > Performances. In the resulting dialog box, select the 3D Accuracy
options to control the visualization mesh detail.

Use the proportional method of tessellation (arcs are substituted by line segments based on their
relative, not absolute, accuracy). This method works for models regardless their dimensions. For
maximum accuracy of the exported virtual world model, set the slider at the rightmost position. If the
resulting file is too complex to be handled effectively with VRML rendering tools, experiment with
this accuracy setting. Find the setting that gives you the smallest possible virtual world model that is
visually acceptable.

VRML Export Filter Settings
The CATIA software enables you to tune some VRML export options.

1 Select Tools > Options > General > Compatibility > VRML options.
2 Select VRML97 as the export format.

The Simulink 3D Animation software uses VRML97 standard format.
3 Select the Save normals check box.

This option affects whether to export explicit face normals definitions.
4 Clear the Save edges check box

Clear this check box for optimum performance. Selecting this check box directs the CATIA
software to export object edges (in the form of IndexedLineSets).

5 Set the appropriate Save textures check boxes to the desired settings.

In particular, if you want to save textures, select the Save textures in external files option. This
option generates external JPG files for object textures.

6 Select the VRML model background color.

This option applies only to exporting products.

VRML Models Exported from the CATIA Environment
The CATIA software exports CATProducts and their CATParts as VRML transforms. The structure of
these transforms corresponds to the CATIA model hierarchy. In addition to transforms that represent
physical elements, the CATIA software creates several transforms and groups in the VRML file. The
transforms and groups represent relationships between objects and other model properties defined in
the CATIA environment.

Some of these additional nodes can be empty. Many CATIA model properties do not have equivalents
in the VRML language. Each part transform contains a hierarchy of nested transforms, groups, and

5 Build Virtual Reality Worlds

5-46

shapes that correspond to the part internal structure. Some of these elements have synthetic DEF
names (for example, _0161DC70). Usually, work with the main transforms that represent each part.

Here is the VRML model of a cylinder assembly consisting of four parts:

The left tree view illustrates the overall structure of the model.

• The CATIA software saves the general model information in the WorldInfo, NavigationInfo,
and Background nodes.

• The software exports the default CATIA viewpoints (it does not export user-defined viewpoints).

Common to all products exported to VRML, there is a top-level transform node representing the
CATProduct.

In the CATIA software, Product CylinderAssembly1 consists of four parts:

• CrankAssembly1
• CylinderSleeve1
• PistonAssembly1
• CrankshaftAssembly1

The export does not preserve the CATProduct and CATPart names. You can identify these objects in
the VRML file in the tree view and in the text mode. For clarity, in the figure, the contents of the part
transforms are collapsed so that only the top-level objects are visible. After four transforms
representing CATParts, the export adds an empty Group node for defining CATIA Constraints. You
can delete such empty nodes from the VRML model.

The conversion scales contents of the CATProduct down by a factor of 1000 (conversion of units from
millimeters to meters).

 Import VRML Models from CATIA Software

5-47

When you have VRML files created with the CATIA software, consider using these features with the
Simulink 3D Animation software.

CATIA Feature Support
Feature Conversion Notes
Object names Exporting to VRML does not preserve CATProduct and

CATPart names. The CATIA environment only creates synthetic
VRML DEF names for subparts, materials, and object
coordinate fields. These synthetic names change between two
or more consecutive export operations.

To work with the Simulink 3D Animation software, provide
meaningful DEF names for the objects that you want to control
from the MATLAB /Simulink environment.

Vertex coordinates The CATIA software saves all vertex coordinates for a part in
one VRML coordinate field, which resides in the first exported
IndexedFaceSet for the part. Several subparts throughout
the file reference the VRML coordinate field with USE
directives.

Preserve this reference. Do not delete or rename the original
Coordinate field DEF name.

Materials The VRML file stores only one material per part. If the part
consists of several subparts in VRML, their material also uses
the USE reference to the material of the first subpart.

Textures Textures are supported.
Level of detail LOD (exporting parts in several levels of detail for more

efficient visualization) is not supported.
Units The CATIA software exports models in millimeters, VRML units

are meters.

Scale resulting objects to visualize them effectively. The
conversion scales the main Transform representing the
CATIA product by a factor of 0.001 (conversion from
millimeters to meters). The scaling occurs regardless of the
units used in the CATIA document.

Viewpoints The VRML file does not save user-defined CATIA viewpoints.

Adjust the Resulting VRML Files
To use the exported VRML models with the Simulink 3D Animation software, adjust exported VRML
files. You can perform these adjustments manually, as described in this topic, or use the
vrcadcleanup and vrphysmod functions to perform some of these tasks.

Add DEF Names to Part Transforms.

In the VRML file, assign a unique name for each VRML object. Add the DEF Object_Name statement
to each part Transform line.

This example shows a VRML file that has DEF names added to the cylinder assembly.

5 Build Virtual Reality Worlds

5-48

Do not adjust parts in the scene that you do not want to control from the MATLAB environment.

Scale VRML Objects

To convert CATProduct size from millimeters to meters (VRML default units), the CATIA software
wraps the transform corresponding to the CATProduct with an additional transform. In this
transform, the scale field is defined. The preceding example illustrates this size conversion.

If you have a small object, or an object to place into an overall virtual world, adjust this scale.

If you leave the VRML object scale in the default state, the local part coordinates are still in
millimeters. Remember this fact when controlling these parts from the MATLAB or Simulink
environment. If your MATLAB or Simulink model units are meters, scale each part individually to
achieve correct results. Delete the scale field from the top-level transform, and add it to each
individual part transform. For example:

Transform {
 children [
 DEF CylinderAssembly1 Transform {
 children [
 DEF CrankAssembly1 Transform {
 scale 0.001 0.001 0.001
 ..
 }

See Also
Functions
stl2vrml | vrcadcleanup

 Import VRML Models from CATIA Software

5-49

Related Examples
• “Use CAD Models with the Simulink 3D Animation Product” on page 5-36
• “Import STL and Physical Modeling XML Files” on page 5-38
• “Import 3D Models from CAD Tools” on page 5-40
• “Modify the CAD Model Virtual World” on page 5-51
• “Link to Simulink and Simscape Multibody Models” on page 5-60

5 Build Virtual Reality Worlds

5-50

Modify the CAD Model Virtual World
In this section...
“Wrap Shape Objects with Transforms” on page 5-51
“Add DEF Names” on page 5-51
“Additional Virtual World Modifications” on page 5-52

To modify the results of CAD tool export filters manually, you can use the 3D World Editor or other
editor. For example, you can compose the converted model into an urban or manufacturing
environment, or add objects such as viewpoints, backgrounds, and lights before using them in
Simulink 3D Animation virtual worlds. Typically, adjusting exported files manually in an editor
involves several modifications.

Wrap Shape Objects with Transforms
CAD tools export parts into VRML or X3D as individual shapes using various object types such as
Shape or Inline nodes. To control part positions and orientations, wrap each such Shape or
Inline node with a node that allows for the changing of these properties. This wrapping node is the
Transform node, which transforms the coordinates of its children. For instance, after wrapping with
a Transform node, an Inline node has syntax similar to this syntax:

Transform {
 children [
 Inline {
 url ["robot_arm1.wrl"]
 }
]
}

To set the initial location of the entire assembly in the virtual world, consider wrapping all parts of
the assembly with an additional Transform node.

Add DEF Names
CAD export filters often export objects with no names or with synthetic nondescriptive names. To
make export objects accessible in MATLAB, give each virtual world object a unique name in the
virtual world 3D file. For example, name the object by adding a DEF Object_Name statement to the
Transform line. After adding the DEF Object_Name, the Robot_Arm1 definition in the main virtual
world 3D file has the syntax similar to this syntax:

DEF Robot_Arm1 Transform {
 children [
 Inline {
 url ["robot_arm1.wrl"]
 }
]
}

The Simulink 3D Animation functions and in the user interface (such as the descriptions of inputs to
the VR Sink block) use these object names. To help with managing the orientation in the object
hierarchy, give the parts descriptive names.

 Modify the CAD Model Virtual World

5-51

Note Sometimes it is necessary to correct bugs introduced in the file by the CAD tool export filter. As
the VRML and X3D format is a text-based format codified by an ISO® standard, these bugs are
relatively easy to identify and correct. If problems occur when you are using exported VRML or X3D
files in the Simulink 3D Animation software, consult MathWorks technical support.

Additional Virtual World Modifications
To work with the virtual world effectively, you can make additional modifications to the scene file
using a virtual world editor. Make these changes on an ongoing basis, in parallel with developing and
using the dynamic model.

• Add a scene title by adding a WorldInfo node with a scene title. Simulink 3D Animation software
uses the title as the virtual world description.

• Enhance the scene.

• Add the Background node defining a color backdrop that simulates the ground and sky, and
optional background textures, such as panoramas for the scene.

• Add scene surroundings. This step is not crucial for the visualization of interactions between
parts in a machine assembly, but is important for the visualization of simulations. For example,
for aircraft and vehicle dynamics the position of one object relative to the scene in which it
operates is important. Adding scene surroundings provides context.

For example, to visualize vehicle dynamics, place a virtual car on a virtual road. Make both
objects to scale (the length units in the car and road models must match). Place the car in an
appropriate position relative to the road. Set proper car scaling, placement, and orientation in
the scene by defining corresponding fields of the Transform node main object (see “Wrap
Shape Objects with Transforms” on page 5-51).

• Configure scene display and navigation.

• Add several viewpoints to be able to observe the object conveniently from different positions.
The viewpoints can be static or moving. Define a static viewpoint as an independent object at
the top level of the scene hierarchy. To create a moving viewpoint, attached a viewpoint to
objects that move in the scene during simulation. Such viewpoints are defined as siblings of
moving objects in the scene hierarchy. For an example of a viewpoint moving with the object,
see the viewpoint Ride on the Plane in the Simulink 3D Animation vrtkoff.wrl example.

• Illuminate a scene by adding lights to it. Although virtual world viewers always have a
headlight available, consider defining lights in the scene so that it looks the same for everyone.
The most useful type of light to illuminate a whole scene is the DirectionalLight node. To
illuminate objects from several directions, consider using a combination of several such lights.

• Add the NavigationInfo node defining the scene default navigation speed and avatar size
that ensures correct display of the object from near and far distances.

For an example of a complete scene definition, see the octavia_scene.wrl file that is part of the
Simulink 3D Animation vr_octavia example.

See Also

Related Examples
• “Use CAD Models with the Simulink 3D Animation Product” on page 5-36

5 Build Virtual Reality Worlds

5-52

https://www.mathworks.com/support/?s_tid=gn_supp

• “Import STL and Physical Modeling XML Files” on page 5-38
• “Import 3D Models from CAD Tools” on page 5-40
• “Import VRML Models from CATIA Software” on page 5-45
• “Link to Simulink and Simscape Multibody Models” on page 5-60

 Modify the CAD Model Virtual World

5-53

Import Visual Representations of Robot Models

In this section...
“Import a DAE File” on page 5-54
“Import a URDF File” on page 5-55
“Import an SDF File” on page 5-56
“Define Viewpoint to Make Imported Model Visible” on page 5-58
“Limitations” on page 5-58

You can import into a virtual world in Simulink 3D Animation robot and robot environment 3-D
models that are defined using unified robot description format (.urdf) or simulation description
format (.sdf). The URDF file format is an XML file format that defines various model (typically robot)
properties. When you import from a URDF file, only the visual representation of the model is
imported. This representation typically refers to model component shape files, defined as STL or DAE
files. You can import visual properties of the objects present in the URDF or SDF files into
corresponding hierarchical structure of Transform nodes containing IndexedFaceSet objects with
textures.

URDF and SDF files use Collada DAE and STL formats to define visual properties of scene objects.

To import visual representation of robots, in the 3D World Editor, select Nodes > Import From.
Then select STL File, Physical Modeling XML File, URDF File, SDF File, or COLLADA File.
From the MATLAB command line, you can use the vrimport function to import .urdf, .dae, .stl,
and .sdf files into a virtual world.

Import a DAE File
The URDF and SDF import supports a subset of the Collada DAE 3D file format (objects that are
typically present in URDF and SDF files: geometric shape objects with textures).

This example imports a Collada DAE file, fox.dae, into a scene with predefined grid, gray
background, and viewpoint. The fox head is a sphere with 1-m radius, placed at the origin and looking
in the direction of VRML +z-axis.

The fox.dae is shipped with the Simulink 3D Animation software. The path is matlabroot/
toolbox/sl3d/sl3ddemos/fox.dae.

1 From the MATLAB Toolstrip, in the Apps tab, in the Simulation Graphics and Reporting
section, click 3D World Editor.

2 In the 3D World Editor, select File > New from Template.
3 In the file dialog box, select the Grids folder and then select the XZGrid.wrl virtual world file.
4 Save the virtual world in the current folder. Select File > Save as and name the virtual world file

fox_dae.wrl.
5 Import the DAE model. Select Nodes > Import From > COLLADA File. Select the fox.dae

file.
6 Open the COLLADA_fox_Transform node and set the scale field to 3 for each dimension.

5 Build Virtual Reality Worlds

5-54

Import a URDF File
In this example, the fox.urdf file refers to fox.dae file. The URDF file transforms the original DAE
model so that the fox is translated to the position [4 1 0] and rotated so that it points to the VRML +x-
axis direction.

The fox.urdf is shipped with the Simulink 3D Animation software. The path is matlabroot/
toolbox/sl3d/sl3ddemos/fox.urdf.

1 From the MATLAB Toolstrip, in the Apps tab, in the Simulation Graphics and Reporting
section, click 3D World Editor.

2 In the 3D World Editor, select File > New from Template.
3 In the file dialog box, select the Grids folder and then select the XZGrid.wrl virtual world file.
4 Save the virtual world in the current folder. Select File > Save as and name the virtual world file

fox_urdf.wrl.
5 Import the URDF model. Select Nodes > Import From > URDF File. Select the fox.urdf file.
6 Open the URDF_visual_Transform node and set the scale field to 3 for each dimension.

 Import Visual Representations of Robot Models

5-55

Import an SDF File
SDF is an XML format that describes objects and environments for robot simulators, visualization,
and control, originally developed as part of the Gazebo robot simulator. The folder in which the
model.sdf file is located defines the SDF model name. This example shows how to import a simple
arm link mechanism.

The example assumes that you have

1 Download the simple_arm model folder (including all its contents) from this Gazebo model site:
http://models.gazebosim.org/simple_arm/. To download all the folder contents, download and
unpack the model.tar.gz file.

2 From the MATLAB Toolstrip, in the Apps tab, in the Simulation Graphics and Reporting
section, click 3D World Editor.

3 In the 3D World Editor, select File > New from Template.
4 In the file dialog box, select the Grids folder and then select the XZGrid.wrl virtual world file.
5 Save the virtual world in the current folder. Select File > Save as and name the virtual world file

simple_arm.wrl.
6 Import the SDF model. Select Nodes > Import From > SDF File. In the simple_arm folder,

select the model.sdf file.
7 Open the SDF_simple_arm_Transform node and set the scale field to 3 for each dimension.

5 Build Virtual Reality Worlds

5-56

http://models.gazebosim.org/simple_arm/

8 The import process creates in the model hierarchy some special Transform nodes that make it
easier to manipulate models. Each rotational joint in the SDF model is represented with a
Transform node with the name starting with axis_. These nodes have rotation axes defined so
that the model elements move consistently if you set the rotation angle to a different value.

Change the rotation angle of a rotational joint node. For example, expand the children node,
then the joint_arm_shoulder_pan_joint node, then the children, and finally, the
axis_arm_shoulder_pan_joint. For the rotation field, set the fourth element to 1.

 Import Visual Representations of Robot Models

5-57

Tip If you associate this virtual world with a VR Sink block in a Simulink model, you can use the
VR Signal Expander block to set only the rotation angle (the fourth element of the rotation
vector) of the axis_xxx Transform node rotation. Leave the first three elements of the vector
unchanged. This approach preserves robot consistency with the way model authors defined
movement of robot parts.

Define Viewpoint to Make Imported Model Visible
When you import a model, often it does not appear in the initial view of the virtual world. If necessary,
create a viewpoint to make the imported model visible when the virtual world opens. If the imported
model is not visible:

1 In the 3D World Editor, select the ROOT node.
2 Select Nodes > Add > Bindable > Viewpoint.
3 To observe the imported model, navigate to a suitable location in the scene.
4 Populate viewpoint properties with current camera settings. In the tree hierarchy pane, right-

click the viewpoint and select Copy values from current camera.
5 Save the virtual world.

Limitations
URDF import transforms robot hierarchy of links and joints into a VRML or X3D hierarchy of
transforms. It imports only visualization properties from each link. Joints are represented by

5 Build Virtual Reality Worlds

5-58

transforms that preserve rotation axes of the original revolute joints and axis alignment of prismatic
joints.

SDF import transforms the hierarchy of SDF model objects into VRML or X3D hierarchy of transforms
the same way as URDF import. It supports a subset of SDF format objects and is limited to visual
objects under the Model element hierarchy. Supported Geometry elements are geometric primitives
and meshes.

See Also
Functions
vrimport | stl2vrml

Related Examples
• “Use CAD Models with the Simulink 3D Animation Product” on page 5-36
• “Import STL and Physical Modeling XML Files” on page 5-38
• “Import 3D Models from CAD Tools” on page 5-40
• “Modify the CAD Model Virtual World” on page 5-51
• “Link to Simulink and Simscape Multibody Models” on page 5-60

 Import Visual Representations of Robot Models

5-59

Link to Simulink and Simscape Multibody Models
In this section...
“Link the Virtual World to a Simulink Model” on page 5-60
“Initial Conditions” on page 5-61
“VR Placeholder and VR Signal Expander Blocks” on page 5-62
“Link to Simscape Multibody Models” on page 5-62
“Link to a MATLAB Model” on page 5-63

To establish a live data connection between the model and the virtual world, create associations
between dynamic model object quantities and corresponding virtual world object properties. For
example, create associations with virtual world object properties such as position and rotations.

Although Simscape Multibody and Simulink are common platform for modeling mechanical systems,
also you can use the Simulink 3D Animation product for the visualization of models implemented in
MATLAB.

Link the Virtual World to a Simulink Model
You associate Simulink model signals to virtual world object properties through the VR Sink block
from the Simulink 3D Animation block library, vrlib.

To associate a Simulink signal to a virtual object property:

1 From the vrlib library, insert a VR Sink block into your Simulink model.
2 To define the virtual world, use the VR Sink block parameters dialog box. Enter the name of the

virtual world 3D file in Source file, or click Browse to select the file interactively. To load the
selected virtual reality scene, click Apply.

3 For smooth visualization of the movement, you can change the block Sample time. For example,
to update the virtual world 25 times per simulation second, set the Sample time to 0.04. Be
careful when using the inherited sample time for the VR Sink block. Depending on the solver
used, using inherited sample time can result in nonequidistant (in simulation time) updating of
the virtual world. Nonequidistant updating gives a false impression of system dynamics to the
person viewing the virtual world.

4 In Virtual World Tree, expand the main object Transform branch. In the scene object
hierarchy, locate all parts you want to control from Simulink according to their names as given in
“Add DEF Names” on page 5-51. Named Transform nodes represent each part. Select the check
box next to the rotation and position fields of the Transform node. You can select other
properties of virtual world objects, such as color, but rotations and positions are the ones most
frequently controlled.

5 Click OK. For each selected field, the VR Sink block creates an input port. Increase the VR Sink
block size as appropriate to accommodate the number of input ports.

After you associate the VR Sink block with a virtual world, you can double-click it to open the
Simulink 3D Animation viewer. To access the block parameters, in the viewer, select Simulation >
Block Properties.

VR Sink inputs take signals of the type corresponding to their virtual world representation. Position
inputs are of type SFVec3f, which is the position represented in [x y z] coordinates. Rotation

5 Build Virtual Reality Worlds

5-60

inputs are of type SFRotation, the four-element vector defining rotation as [axis angle], using
the coordinate system described in “Coordinate System Used” on page 5-41, where the angle value is
in radians.

Match the coordinate system used by the Simulink model to that of the virtual world. If the two
coordinate systems are not identical, transform an axis.

Usually, object positions are available in the form required by virtual world (Cartesian coordinates).
Often, object rotations are defined using the rotation matrix representation. To convert such rotations
into the VRML format, use the Rotation Matrix to VRML Rotation block.

Object positions and rotations are treated differently depending on the virtual world hierarchy:

• To define all parts in a Simulink model in global coordinates, when the virtual world has a flat
structure of independent objects, use these positions and rotations.

Object positions Send to VR Sink all positions in global coordinates.
Object rotations Send to VR Sink all rotations in global coordinates, with the center

of rotation defined as the coordinate system origin. If the default
center of rotation of Transform objects is [0 0 0], you do not
need to define the center for each part in the virtual world 3D file.

• When all parts in Simulink model follow hierarchical relations, and the virtual world has a nested
structure, use these positions and rotations.

Object positions Send to VR Sink all positions in local coordinates relative to their
parents or predecessors in the object hierarchy. For example, send
the robot tool position relative to the robot hand.

Object rotations Send to VR Sink all rotations in local coordinates relative to their
parents or predecessors in the object hierarchy. For example, send
the robot tool rotation relative to the robot hand.

Match the positions of joints between objects visually by coinciding
the centers of rotation in the virtual world and in the Simulink
model. Coincide the center of rotation because when joints between
parts are not positioned in the origin ([0 0 0]) of the coordinate
system of the parent.

To define a center of rotation different from the default value, [0 0
0], define the center field of the child Transform node in the
virtual world 3D file. For example, define the robot tool center of
rotation to coincide with the joint connecting the hand and the tool
in the hand local coordinates.

In a hierarchical scene structure, when the parts are connected by revolving joints, it is easy to define
the relative rotations between parts. The joint axis directly defines the virtual world rotation axis, so
you can construct the [axis angle] four-element rotation vector.

Initial Conditions
A Simulink model initial conditions must correspond to the initial object positions and rotations
defined in the virtual world. Otherwise, the object controlled from Simulink jumps from the position

 Link to Simulink and Simscape Multibody Models

5-61

defined in the VRML file to the position dictated by Simulink for the simulation. To compensate for
this offset, use one of these approaches:

• In the virtual world 3D file, define another level of nested Transform around the controlled
object.

• In the Simulink mode, add the object initial position to the model calculations before sending to
the VR Sink block.

Align the Simulink model initial conditions with the virtual world object positions, Maintain the
correct position of the object relative to the surrounding scene. You can adjust the position of the
surroundings of the object. For example, move the road position so that the car at position [0 0 0]
stays on the road, without the wheels sinking or floating above the road.

VR Placeholder and VR Signal Expander Blocks
The VR Sink block accepts only inputs that define fully qualified field values. Dynamic models that
describe the system behavior in only one dimension still require full 3D positions for all controlled
objects for their virtual reality visualization.

To simplify the modeling in such cases, you can use the VR Placeholder and VR Expander blocks of
the Simulink 3D Animation library.

The VR Placeholder block sends out a special value that is interpreted as unspecified by the VR Sink
block. When this placeholder value appears on a VR Sink input, as a single value or as vector
element, the appropriate value in the virtual world remains unchanged.

The VR Signal Expander block creates a vector of predefined length, using some values from the
input ports and filling the rest with placeholder signal values.

To control the position of a virtual object in a one-dimensional dynamic model, use the VR Signal
Expander block with the controlled dimension as its input. For its output, use a three-component
vector in the VR Sink block. The remaining vector elements are filled with placeholder signals.

Use of the VR Signal Expander block is also a possibility when defining rotations. When the axis of
rotation is defined in the virtual world 3D file, you can send to the VR Sink block a virtual world
rotation value. Use a value consisting of three placeholder signals and the computed angle. This
rotation value forms a valid four-element [axis angle] vector.

Link to Simscape Multibody Models
You can use the Simulink 3D Animation product to view the behavior of a model created with the
Simscape Multibody software.

1 Build a model of a machine in the Simulink interface using Simscape Multibody blocks.
2 Create a detailed visual representation of your machine in a virtual world.
3 Connect the virtual world to the Simscape Multibody body sensor outputs.
4 View the behavior of the bodies in a virtual world viewer.

You can use the Simscape Multibody software for 3D visualizations using the Simulink 3D Animation
product. In addition to the features that Simscape Multibody product offers for modeling mechanical
assemblies, the following features simplify the visualization of Simscape Multibody models in virtual
reality:

5 Build Virtual Reality Worlds

5-62

• Simscape Multibody and virtual world coordinate systems are identical.
• In the Simscape Multibody software, you can work with both global and local object coordinates.

This flexibility makes it easy to adapt the model to the structure of the virtual world exported from
the CAD tool.

The Simscape Multibody product also offers a convenient way of importing CAD assembly designs
into Simscape Multibody machines through the Simscape Multibody Link interface. Alternatively,
when you export a CAD assembly to the virtual world format, you can add virtual reality visualization
to such assemblies.

The Simulink 3D Animation software includes the following functions for working with Simscape
Multibody files: vrcadcleanup, vrphysmod, and stl2vrml.

Depending on the virtual world hierarchy, you can use one of two approaches to help visualize
Simscape Multibody machines:

• When the virtual world has a flat structure of independent objects, you can obtain the positions
and rotations of machine parts using Body Sensor blocks. Connect the Body Sensor block to
appropriate coordinate systems attached to the bodies. Define positions and rotations using global
coordinates. Usually, you can connect the sensor to a body coordinate system with origin at [0 0
0] and with an initial rotation matrix defined as the identity matrix, [1 0 0; 0 1 0, 0 0 1],
in the global coordinates.

• When the virtual world has a hierarchical structure of nested objects, you can obtain the body
positions and rotations. Use a Body Sensor block with its output set to use local body coordinates.
In special cases, such as when two bodies are connected through a revolving joint, you can get the
angle between the objects using a Joint Sensor block.

Link to a MATLAB Model
To help you to interact with virtual worlds, the Simulink 3D Animation product offers a set of
MATLAB functions and constructs referred to collectively as its “MATLAB interface.” Circumstances
when this MATLAB functionality is appropriate for use with CAD-based designs include:

• Using customized GUIs to visualize static objects and their relations in a virtual environment, such
as in interactive machine assembly instructions.

• Visualizing 3D information based on an independent quantity (not necessarily time).
• Using MATLAB interface functions in Simulink model callbacks.
• Visualizing systems whose dynamic models are available as MATLAB code.
• Visualizing systems where massive object changes, such as deformations, take place. In this case,

send dynamically sized matrix-type data from the dynamic models to virtual worlds, which is not
possible using just Simulink signals.

For information on setting object properties using the MATLAB interface, see “Interact with Virtual
Reality Worlds”.

See Also

Related Examples
• “Use CAD Models with the Simulink 3D Animation Product” on page 5-36

 Link to Simulink and Simscape Multibody Models

5-63

• “Import STL and Physical Modeling XML Files” on page 5-38
• “Import 3D Models from CAD Tools” on page 5-40
• “Import VRML Models from CATIA Software” on page 5-45
• “Modify the CAD Model Virtual World” on page 5-51
• “Interact with Virtual Reality Worlds”

5 Build Virtual Reality Worlds

5-64

Using the 3D World Editor

• “3D World Editor” on page 6-2
• “Open the 3D World Editor” on page 6-5
• “Create a Virtual World” on page 6-9
• “Edit a Virtual World” on page 6-11
• “Reduce Number of Polygons for Shapes” on page 6-20
• “Virtual World Navigation in 3D World Editor” on page 6-21
• “3D World Editor Library” on page 6-26

6

3D World Editor
In this section...
“Supported Platforms” on page 6-2
“Use with Other Editors” on page 6-2
“VRML and X3D Support” on page 6-2
“Nodes, Library Objects, and Templates” on page 6-2

The 3D World Editor is a native VRML and X3D editor.

For an example that shows how to see the 3D World Editor to create a virtual world, see “Build and
Connect a Virtual World” on page 5-8.

Supported Platforms
The 3D World Editor works on all supported platforms for the Simulink 3D Animation product.

The 3D World Editor is installed as part of the Simulink 3D Animation installation. It is the default
virtual world editor.

Use with Other Editors
As you create a virtual world, you can use a different editor for individual phases of the process.

Choose an editor that best meets your needs. For a description of the benefits and limitations of
different types of editors, see “Choose a Virtual World Editor” on page 5-2.

VRML and X3D Support
The file formats for the 3D World Editor are VRML and X3D.

The 3D World Editor supports all VRML97 types and language elements, except as noted.

For general VRML limitations relating to the Simulink 3D Animation software as a whole, see “VRML
Compatibility” on page 1-12.

For general X3D limitations relating to the Simulink 3D Animation software as a whole, see “X3D
Support” on page 1-9.

PixelTexture Nodes

You cannot create or edit PixelTexture node image contents. Existing PixelTexture node image
contents are fully preserved

Nodes, Library Objects, and Templates
Use the 3D World Editor to specify VRML or X3D to create 3-D virtual worlds that you can connect to
a Simulink model.

Use the 3D World Editor to:

6 Using the 3D World Editor

6-2

• To create a virtual world, assemble nodes. You can add nodes that specify many aspects of a
virtual world, such as:

• Appearance (for example, font style, color, and material)
• Navigation information (for example, navigation mode and headlights)
• Geometry (for example, boxes, text, and elevation grids)
• Groups (for example, transforms)
• Interpolators
• Light
• Sensors

• Select objects from a set of supplied libraries or from custom libraries for:

• Components (for example, geometric objects, backgrounds, aircraft, vehicles, landscapes, and
architecture)

• Materials
• Textures

• Use a supplied template as a starting point for a virtual world.

Template Virtual World 3D Files

The 3D World Editor includes template virtual world 3D files that you can use as a starting point for
creating virtual reality worlds. Some examples of templates are the Earth, road, sea, and terrain
virtual world templates.

To access templates, use one of the following approaches:

• Select File > New From Template.
• Select the New File From Template button .

A template file name displayed in the 3D World Editor always starts with Template:.

To adapt the template world for your application, edit the file. To save your changes, use the File >
Save As option. You cannot overwrite an existing template file.

You can create your own template files. Store them in a different folder than the folder used for
template files provided with Simulink 3D Animation.

In virtual worlds that you create, you can reference nodes, such as texture files, that appear in the
template files provided with Simulink 3D Animation.

See Also
Functions
vredit | vrgetpref | vrsetpref

Related Examples
• “Edit a Virtual World” on page 6-11
• “Set the Default Editor” on page 5-5

 3D World Editor

6-3

• “Open the 3D World Editor” on page 6-5
• “Create a Virtual World” on page 6-9
• “Reduce Number of Polygons for Shapes” on page 6-20
• “Virtual World Navigation in 3D World Editor” on page 6-21
• “Workflow for Building and Using Virtual Worlds” on page 1-4

6 Using the 3D World Editor

6-4

Open the 3D World Editor
In this section...
“3D World Editor Is the Default Editor” on page 6-5
“Open an Empty Virtual World” on page 6-5
“Open a Saved Virtual World” on page 6-5
“3D World Editor Panes” on page 6-6
“Preferences for 3D World Editor Startup” on page 6-7

3D World Editor Is the Default Editor
When you install the Simulink 3D Animation product, the 3D World Editor is configured to be the
default editor. For details about changing the default editor, see “Set the Default Editor” on page 5-5.
For an overview of the 3D World Editor, see “3D World Editor Panes” on page 6-6.

Note You can also use the V-Realm Editor. For more information, see “V-Realm Builder Help” on page
2-15.

Open an Empty Virtual World
Use one of these approaches to open an empty virtual world in the 3D World Editor.

• From the Simulink Toolstrip, in the Apps tab, in the Simulation Graphics and Reporting
section, click the app icon.

• From the MATLAB Toolstrip, in the Apps tab, in the Simulation Graphics and Reporting
section, click 3D World Editor.

• If the 3D World Editor is your default virtual world editor, open an empty virtual world from the
MATLAB command line using the edit command.

edit(vrworld(''))
• Regardless of Default Editor preference setting, you can use the vredit command, without

arguments.
• From within the 3D World Editor, select either File > New or File > New From Template. If

there is already a file open in the 3D World Editor, these options open a new instance of the editor.
Use multiple instances of the editor to work on multiple virtual worlds at the same time and to
copy and paste from one virtual world to another.

Open a Saved Virtual World
Use one of these approaches to open a saved virtual world.

• From the MATLAB Current Folder panel, right-click a virtual world 3D file and from the context
menu, select Edit

• If 3D World Editor is your default virtual world editor, start it from the MATLAB command line
using the edit command. For example:

edit(vrworld('myVRMLfile.wrl'))

 Open the 3D World Editor

6-5

• Regardless of what your default virtual world editor is, from the MATLAB command line, use the
vredit command with the name of the virtual world 3D file. For example:

vredit('membrane.wrl')

• From within the 3D World Editor, select File > Open. If a file is already open in the 3D World
Editor, this option opens a new instance of the editor.

3D World Editor Panes
The 3D World Editor provides three panes:

• Tree structure pane — View the hierarchy for the virtual world that you are editing.
• Virtual world display pane — Observe the virtual world as you create it.
• Object property edit pane — Change values for node items.

Use the tree structure pane interactively to create graphical virtual world elements and to view of
all the virtual world structure elements present in the virtual world. These structure elements are
called nodes. The 3D World Editor lists the nodes and their properties according to their respective
virtual world node types. In the tree viewer, you give the nodes unique names.

Use the virtual world display pane to display a graphical representation of a 3-D scene.

6 Using the 3D World Editor

6-6

Use the object properties edit pane to edit a selected property or add a comment to a selected node
or property.

Tree Structure Pane Icons

The Tree structure pane displays icons to help you visually distinguish node field types.

Node Field Type 3D World Editor Icon
field
eventIn

eventOut

exposedField

ROUTE

USE

Preferences for 3D World Editor Startup
The Simulink 3D Animation Preferences > 3D World Editor pane includes the following options
for specifying the startup position:

• For the default location, select Position. Then specify the pixel location for the lower-left corner,
the width, and the height (for example, [96 120 862 960]).

• To open the 3D World Editor in the same location where you exited it, select Save position on
exit.

You can specify whether the editor starts up with the default virtual world display layout or with the
layout as it was when you exited it previously. The saved layout includes settings for the view,
viewpoints, navigation, and rendering. Simulink 3D Animation saves the layout in a separate virtual
world 3D file for up to eight files.

By default, the virtual world opens with the layout saved at exit. To have the virtual world open using
the default layout, clear the Preferences > Simulink 3D Animation > 3D World Editor >
Preserve Layout per Virtual Reality 3D File check box.

See Also
Functions
vredit | vrgetpref | vrsetpref

Related Examples
• “3D World Editor” on page 6-2
• “Edit a Virtual World” on page 6-11
• “Set the Default Editor” on page 5-5
• “Set Simulink 3D Animation Preferences” on page 2-5
• “Create a Virtual World” on page 6-9

 Open the 3D World Editor

6-7

• “Workflow for Building and Using Virtual Worlds” on page 1-4

6 Using the 3D World Editor

6-8

Create a Virtual World
Creating a virtual world involves several tasks. You can use the 3D World Editor throughout the
process of building a virtual world, and you can perform the tasks in many different ways.

For a step-by-step tutorial about building a virtual world using the 3D World Editor, see “Build and
Connect a Virtual World” on page 5-8.

Here is an example of a common workflow for creating a virtual world using the 3D World Editor. This
example workflow includes optional tasks and a small subset of the types of tasks that you can
perform. For more information, see “Edit a Virtual World” on page 6-11.

1 Open a new virtual world 3D file.
2 Under the ROOT node, optionally add:

• A WorldInfo node to document the virtual world.
• A NavigationInfo node to define overall navigation characteristics of the virtual world,

such as the Avatar size.
3 Under the ROOT node, add a Transform node in the virtual world for each object that you want

to share properties with other object in that same Transform node.
4 Under the Transform node, include nodes in a hierarchy, such as:

children
 Shape
 appearance
 Appearance
 material
 Material
 texture
 textureTransform
 Geometry
 Box

5 Use the object properties edit pane to change default property values to create the effects that
you want.

6 To define aspects (such as textures) for virtual world objects, insert 3D World Editor library
objects. Give a DEF name to each object that you create, so that you can access them using
Simulink 3D Animation.

7 In the virtual world display pane, use the context menu to specify display characteristics, such
as:

• View characteristics (for example, zooming and a navigation panel)
• Viewpoints
• Navigation characteristics (for example, methods (such as fly or walk) and speed)
• Rendering techniques (for example, antialiasing, lighting, and transparency)

8 Save or export the virtual world 3D file.

See Also
Functions
vredit | vrgetpref | vrsetpref

 Create a Virtual World

6-9

Related Examples
• “Open the 3D World Editor” on page 6-5
• “Virtual Reality World and Dynamic System Examples” on page 1-16
• “Create vrworld Object for a Virtual World” on page 4-2

6 Using the 3D World Editor

6-10

Edit a Virtual World
In this section...
“Add Objects” on page 6-11
“Copy and Paste a Node” on page 6-12
“Edit Object Properties” on page 6-13
“Document a Virtual World Using Comments” on page 6-14
“Display Event Fields” on page 6-14
“Expand and Collapse Nodes” on page 6-14
“Highlight Nodes and Virtual World Objects” on page 6-15
“Wrap Nodes as Children of Another Node” on page 6-16
“Remove Nodes” on page 6-17
“Save and Export Virtual World 3D Files” on page 6-17
“Edit VRML and X3D Scripts” on page 6-18

For information about opening a file in the editor, see “Open the 3D World Editor” on page 6-5.

For a step-by-step tutorial, see “Build and Connect a Virtual World” on page 5-8.

Add Objects
Add virtual world objects (for example, the wing of an airplane) by adding nodes in the tree
structure pane. The hierarchy of nodes controls the scope to which node properties apply.

Note Nodes must have unique names to work in the Simulink 3D Animation product.

Approaches for Adding Objects

Use one of these approaches to add a node.

Approach Procedure
Use the Nodes menu 1 In the tree structure pane, select the parent node for the

object that you want to add.
2 Select Nodes > Add.
3 To add the node that you want, select appropriate submenus.

Use a context menu for a node 1 In the tree structure pane, right-click the parent node for
the object that you want to add.

2 To add the node that you want, select the Add Node menu,
and then select appropriate submenus.

 Edit a Virtual World

6-11

Approach Procedure
Insert an object from a library For Material, Texture, and children nodes, select the Insert

From menu option (from either the Nodes menu or from the
context menu for a node).

For information about library objects, see “3D World Editor
Library” on page 6-26.

Add an inlined virtual world 3D
file

For a ROOT or children node, from the Nodes menu or the
context menu for the node, select the Inline Virtual Reality 3D
File menu item.

You can inline VRML files (.wrl) files, but not X3D files (.x3d
or .x3dv).

The node that you add gets added to different locations in the hierarchy, depending on the node that
you select to begin adding a node.

Selected Node Location of Added Node
ROOT At the bottom of the hierarchy
Node at the next level down from the ROOT node
(for example, a Transform node).

Above the selected node

A children node Under the children node (as a child node of the
selected node)

Copy and Paste a Node
You can copy a node below a top-level Transform node and paste that copied node to be a child of
another node, including the ROOT node.

You can paste the copied node as either an explicit text copy (Paste) or as a referenced copy (Paste
As Reference).

• An explicit text copy allows you to edit properties of that node, independently from the original
node that you copied.

• A referenced copy node appears with the term USE. Referenced copies streamline the tree
structure pane display. Edits that you make to the original (referenced) node are applied to the
copied node, ensuring that the two nodes remain exact copies of each other.

To copy and paste a node:

1 In the tree structure pane, select the node that you want to copy.
2 Copy the node, using one of these techniques:

• Select Edit > Copy.
• Right-click the node and select Copy.

3 Under the appropriate node, paste the copied node.

• Paste the node using one of the following techniques:

• Select the Edit > Paste or the Paste As Reference menu item.

6 Using the 3D World Editor

6-12

• Right-click the parent node and select Paste Node, and then select Paste or Paste As
Reference.

Copy and Paste Between Virtual Worlds

In the same editing session, you can copy nodes from a virtual world in one virtual world 3D file to
another virtual world in a different file. After you copy the nodes from one virtual world, select File >
Open to open the second file where you want to paste the nodes.

Edit Object Properties
To define the characteristics of an object, in the tree structure pane, select the appropriate property.
At the bottom of the 3D World Editor, use the object properties edit pane to change property
values. Then click Apply.

The tree structure pane shows the current property values, which reflect your edits.

When you enter a numeric field value in the 3D World Editor, you can use MATLAB expressions and
MATLAB variables. For example, to convert an angle from degrees to radians, enter a MATLAB
expression such as 25*pi/180.

Set Viewpoint Values Using Camera Position

You can use the current camera position to specify interactively a viewpoint in the 3D World Editor.

1 Navigate to the position in the scene where you want the viewpoint.
2 In the tree structure pane, right-click a Viewpoint node.
3 Select Copy values from current camera.

Specify a URL

For objects that have a URL field, to specify a URL, select the node and use one of these approaches.

• In the property edit box for the URL, enter the URL.
• Select the 0 on the left side of the property edit box and click the Select File URL button.

Navigate to the file.

 Edit a Virtual World

6-13

Document a Virtual World Using Comments
To document a virtual world, in the object property edit pane, use the Comments tab for nodes and
properties. Comments can help others understand the design of a virtual world.

Comments do not appear in the virtual world. They appear in the virtual world 3D file, next to the
given node or property, on lines that begin with #.

Display Event Fields
You can display eventIn and eventOut fields in the 3D World Editor tree pane. Either click the
Show Events button or select Tree > Show Events.

You can perform an IS mapping for events in a PROTO declaration.

Expand and Collapse Nodes
To expand a node in the tree structure pane, click the plus (+) sign to the left of the node. To
collapse a node, click the minus (–) sign to the left of the node.

To expand or collapse all nodes in one step, select Tree > Expand All or Tree > Collapse All.

To expand subtrees within a node:

1 In the tree structure pane, right-click a node.
2 From the context menu, select Expand Subtree.

Alternative approaches for expanding the subtree for a node are:

6 Using the 3D World Editor

6-14

• Select Tree > Expand Subtree.
• Click the button.

Hide Default Values

To simplify the tree view, you can hide default values. Select Tree > Hide Default Values. To display
default values, clear the Hide Default Values option.

Highlight Nodes and Virtual World Objects
To select and highlight virtual world objects using the mouse pointer in the 3D World Editor view
pane, use the select mode. Use that mode to highlight a node that defines a virtual world object or to
highlight a virtual world object that a node defines. In the 3D World Editor display pane, the selected
virtual world object is highlighted with an orange outline. For example:

1 Open the vrtkoff virtual world and select File > Open in editor.
2 In the 3D World Editor toolbar, click the button.

Tip Alternatively, you can select the View Pane > Select menu item.

When the cursor hovers over a selectable object in the view pane, the cursor shape changes to a
hand symbol.

3 In the virtual world display pane, click the tail of the plane.

The corresponding Shape node in the tree structure pane is highlighted.
4 In the tree structure pane, click in the Tower (Transform) node, select the bottom Shape

node. The floors of the tower are highlighted.

 Edit a Virtual World

6-15

Tip If you select a node in the tree structure pane but do not see anything highlighted in the
virtual world display pane, adjust the viewing angle to make the highlighted object visible.

5 To return to navigation mode, in the 3D World Editor toolbar, click the button.

Tip Alternatively, you can select the View Pane > Navigate menu item.

You can use Shift-click to select multiple objects in the tree structure pane or view pane.

If you do not want objects to be highlighted when you pick them, in the display pane right-click and
clear the Rendering > Highlight Selected Objects option. Alternatively, you can use the F4 key.

Note Compound virtual world objects, such as objects defined using Inline and PROTO nodes, are
selected and highlighted as a whole. You cannot select individual components of these objects.

Selection and Highlighting Preferences

By default, the cursor in view pane navigates in the virtual world. To have the mouse cursor in the
view pane behave in select mode by default, set the Simulink 3D Animation 3D World Editor
preference View pane mouse behavior preference to select. As an alternative, use the
DefaultEditorMouseBehavior parameter with the vrsetpref command.

By default, virtual world objects are highlighted when you select them using select mode. To have the
default behavior for selected virtual world objects be to not highlight the objects, set the Simulink 3D
Animation 3D World Editor preference Highlight selected objects preference to off. As an
alternative, use the DefaultEditorHighlighting parameter with the vrsetpref command.

Wrap Nodes as Children of Another Node
To wrap contiguous nodes as children of another node:

6 Using the 3D World Editor

6-16

1 Select the nodes. You can use the Shift key to select contiguous nodes, and the CTRL key to
select discontiguous nodes.

2 Right-click the selected nodes and from the context menu, select Wrap By.

As an alternative, on the 3D World Editor menu bar, select Nodes > Wrap By.
3 From the list of nodes, select the node in which you want to wrap the selected nodes.

Remove Nodes
To delete one or more nodes, select the nodes and use one of these methods:

• On the toolbar, click the red X button.
• Click the Delete button.
• Select Edit > Delete.
• Right-click the node and select Delete.

From the Edit menu, you can also delete a specific child node or all the children nodes of a selected
parent node, without deleting the parent node.

To cut a node and save it to the clipboard, select the node and use one of these techniques:

• On the toolbar, click the scissors button.
• Select Edit > Cut.
• Right-click the node and select Cut.

Save and Export Virtual World 3D Files
You can save your virtual world files as virtual world using the File > Save or File > Save As menu
items.

If you use the Save option, the 3D World Editor renames the previous version of the file by
appending .bak after the .wrl, .x3dv, or .x3d extension.

If you use the Save As option, the 3D World Editor saves the file using the new name that you specify.
The file is saved in a form that the Simulink 3D Animation Viewer and 3D World Editor support (for
example, the saved file preserves links to the library texture files).

 Edit a Virtual World

6-17

Use the File > Export menu item to export a virtual world 3D file for use:

• With other VRML or X3D tools
• On different computers
• In previous versions of the Simulink 3D Animation (previously the Virtual Reality Toolbox) product

(for VRML files)

Note You cannot save an X3D file (.x3d or .x3dv) file as a VRML (.wrl) file.

For exported files, the 3D World Editor copies referenced inlined virtual world 3D files and texture
files to the <filename>_files folder. It modifies the corresponding URLs for those files, so that
they point to the <filename>_files folder.

Edit VRML and X3D Scripts
To add a VRML or X3D Script node:

1 In the Tree structure pane, select the ROOT node.
2 Select the appropriate type of script, using the Node > Add > Common > Script menu.

To add Script interface elements:

1 Right-click a Script node.
2 Select the appropriate Add Interface Item menu option.

The following is an example of a Script node in the Tree structure pane.

For a url node, click the node and either specify the path to a JavaScript® file or enter the URL code
in the Object property edit pane.

6 Using the 3D World Editor

6-18

See Also
Functions
vredit | vrgetpref | vrsetpref

Related Examples
• “3D World Editor Library” on page 6-26
• “Set the Default Editor” on page 5-5
• “Open the 3D World Editor” on page 6-5
• “Create a Virtual World” on page 6-9
• “Reduce Number of Polygons for Shapes” on page 6-20
• “3D World Editor Library” on page 6-26
• “Virtual World Navigation in 3D World Editor” on page 6-21
• “Workflow for Building and Using Virtual Worlds” on page 1-4

 Edit a Virtual World

6-19

Reduce Number of Polygons for Shapes
For a node that is, or includes, an IndexedFaceSet node, you can improve rendering speed by
reducing the number of polygons in the IndexedFaceSet. Choose the polygon reduction factor that
produces your desired balance of rendering performance and quality.

To reduce the number of polygons:

1 Right-click an IndexedFaceSet node, or a node that includes one or more IndexedFaceSet
nodes.

2 Select Optimize Child Geometries.
3 In the Geometries Optimization Preview dialog box, use the slider or enter a value in the

Polygon reduction factor field to set the polygon reduction factor. A value of 0 performs the
maximum reduction, and a value of 1 performs no reduction.

4 Click OK.

See Also

Related Examples
• “Edit a Virtual World” on page 6-11

6 Using the 3D World Editor

6-20

Virtual World Navigation in 3D World Editor
In this section...
“Specify Virtual World Rendering” on page 6-21
“Basic Navigation” on page 6-21
“Coordinate Axes Triad” on page 6-21
“View Panes” on page 6-22
“Pivot Point” on page 6-23
“View All/View Selected” on page 6-23

Note Navigation in the 3D World Editor generally is the same as navigation in the Simulink 3D
Animation Viewer

. For example, you can use stereoscopic viewing with the 3D World Editor. For more information
about viewer navigation, see “Simulink 3D Animation Viewer”.

Specify Virtual World Rendering
You can control the rendering used in the virtual world display pane of the 3D World Editor. Right-
click in the virtual world display pane and set rendering options, such as antialiasing, lighting, and
transparency.

Basic Navigation
Use the virtual world display pane to visualize the virtual world as you create it.

To control navigation, right-click anywhere in the pane and select the appropriate navigation options.
You can control aspects such as navigation methods (for example, fly, or walk) and speed.

To save these navigation settings in a virtual world file, define the navigation properties in a
NavigationInfo node.

To navigate in the virtual world, left-click in the pane. The cursor changes to a white cross hair.
Moving the cursor changes the orientation of the virtual world.

Coordinate Axes Triad
To help you visualize changes in the orientation (coordinate axes) of nodes in a virtual world, the
virtual world display pane includes a triad of red, green, and blue arrows. These arrows are parallel
with global x (red arrow), y (green arrow), and z (blue arrow) coordinate axes. As you navigate in a
virtual world, the triad display changes to reflect changes in orientation.

 Virtual World Navigation in 3D World Editor

6-21

To hide the triad for a virtual world, or to change the location of the triad in the virtual world
display pane, right-click in the pane and select the appropriate option from the View > Triad menu.

To change the default location or visibility of the triad:

1 From the MATLAB Toolstrip, in the Home tab, in the Environment section, select Preferences.
2 In the Preferences dialog box left pane, select Simulink 3D Animation > 3D World Editor >

Triad.

View Panes
You can view the virtual world in one pane, two horizontal panes, two vertical panes, or four panes.

For example, if you select View Pane > Grid View, the 3D World Editor displays four view panes:

You can also use toolbar buttons to set view panes:

When the grid view panes are open and you change the view pane option, the editor displays these
view panes from the grid view.

New View Pane Option Grid View Panes Displayed
Horizontal Split Left two panes
Vertical Split Top two panes

6 Using the 3D World Editor

6-22

New View Pane Option Grid View Panes Displayed
Single View Top left pane

To change the relative size of a pane, select one of the gray borders for a view pane and drag the
cursor.

To delete a pane when there are multiple panes, click the dot in the border between view panes.

You can control the navigation of each pane independently. For example, you can set viewpoints,
manipulate the triad, and specify rendering techniques independently for each pane. The navigation
panel in the active pane is blue. For example:

Pivot Point
To use a mouse to rotate a virtual world around a point, In Examine mode, you can use a pivot point.

The default pivot point is 0,0,0 (world coordinates). To set a new pivot point, hold Ctrl and double-
click the spot where you want the pivot point.

View All/View Selected
To bring a specific node into view in the 3D World Editor, right-click its entry in the Tree Structure
pane and select View Node.

 Virtual World Navigation in 3D World Editor

6-23

You can also use the context menu in the Virtual world display pane to bring a selected node into
view. Right-click the Virtual world display pane and select Navigation > View Selected.

To bring the entire world into view, right-click anywhere in the Virtual world display pane and
select Navigation > View All.

6 Using the 3D World Editor

6-24

See Also
Functions
vredit | vrgetpref | vrsetpref

Related Examples
• “3D World Editor” on page 6-2
• “Set Simulink 3D Animation Preferences” on page 2-5
• “Simulink 3D Animation Viewer”

 Virtual World Navigation in 3D World Editor

6-25

3D World Editor Library
In this section...
“3D World Editor Library Objects” on page 6-26
“Add a Library Object” on page 6-26
“Guidelines for Using Custom Objects” on page 6-27

3D World Editor Library Objects
The 3D World Editor includes a library of virtual world objects, which you can insert into a virtual
world. The library consists of component, texture, and material objects. These library objects
supplement the default empty nodes available via the Nodes menu or the Insert From context menu
item. The library objects are predefined with specific nodes and property settings to represent
common virtual world effects.

Examples of component objects in the library include:

• Aircraft
• Vehicles
• Backgrounds
• Shapes

Examples of texture objects are:

• Surface of Earth
• Surface of the moon
• Water
• Surfaces of building materials

Examples of material objects are:

• Colored plastics
• Colored metals
• Sand

After you add a library object to a virtual world, you can modify its nodes and properties.

Add a Library Object
To add a 3D World Editor library object to a virtual world:

1 Select the parent node under which you want to insert the library object.
2 Use one of these techniques to access the library objects:

• Select the Nodes > Insert From menu item.
• Right-click the parent node and select the Insert From menu item.

The set of objects displayed depends on the parent node that you select. For example, if you
select a child node under a Transform node, you can choose among Component sublibrary

6 Using the 3D World Editor

6-26

objects. To add a material object, select an Appearance or Material node or material field.
To add a texture library object, select an Appearance node or texture field.

3 To find the object that you want to insert, follow the folder paths.

You can also insert objects from other locations, using the Insert From > Other Location menu
item.

• The first Transform node of the file that you select from another location is inserted in place into
the tree view of the virtual world that you are editing.

• If you want to insert a whole virtual world 3D file into the virtual world that you are editing, use
the Nodes > Inline Virtual Reality 3D file menu option.

Before you add a custom library object from a location other than from the 3D World Editor object
library, see “Guidelines for Using Custom Objects” on page 6-27.

Guidelines for Using Custom Objects
If you use a VRML or X3D object from a source other than from the 3D World Editor object library,
the object must comply with these rules.

• A component object must be in a file that contains at least one Transform node.
• A material object must be a file whose only content is a fully qualified Material node.
• A texture object must be in either:

• A .png, .jpg, or .gif graphics file for use in the URL field of an ImageTexture node.
• A file whose only content is a fully qualified ImageTexture node.

If you create VRML or X3D objects to use with the 3D World Editor, create your own folder for storing
the custom objects. Avoid using the 3D World Editor library folder. Use your own folder so that you
can:

• Edit the custom library object in the library folder; the 3D World Editor library folders are
generally read-only.

• Update to a future version of the Simulink 3D Animation product without compatibility issues
relating to mixing custom objects with the 3D World Editor objects.

See Also

Related Examples
• “Edit a Virtual World” on page 6-11
• “3D World Editor” on page 6-2

 3D World Editor Library

6-27

Viewing Virtual Worlds

• “Virtual World Viewers” on page 7-2
• “Simulink 3D Animation Viewer” on page 7-4
• “Open the Simulink 3D Animation Viewer” on page 7-7
• “Simulate with the Simulink 3D Animation Viewer” on page 7-8
• “Specify Rendering Techniques” on page 7-9
• “Navigate Using the Simulink 3D Animation Viewer” on page 7-15
• “Set Viewpoints” on page 7-23
• “Navigate Through Viewpoints” on page 7-26
• “Record Offline Animations” on page 7-29
• “Play Animations with Simulink 3D Animation Viewer” on page 7-35
• “Configure Frame Capture Parameters” on page 7-36
• “Capture Frames” on page 7-37
• “Simulink 3D Animation Web Viewer” on page 7-38
• “Open the Web Viewer” on page 7-39
• “Navigate Using the Web Viewer” on page 7-41
• “Listen to Sound in a Virtual World” on page 7-43
• “View a Virtual World in Stereoscopic Vision” on page 7-45
• “Active Stereoscopic Vision Configuration” on page 7-47

7

Virtual World Viewers
In this section...
“Host and Remote Viewing” on page 7-2
“Comparison of Viewers” on page 7-2

After you create a virtual world in VRML or X3D (see “Build Virtual Reality Worlds”), you can
visualize that virtual world with a virtual world viewer or HTML5-enabled web browser.

The Simulink 3D Animation product includes three viewers.

• Simulink 3D Animation Viewer (the default viewer)
• Simulink 3D Animation Web Viewer
• Orbisnap viewer

To determine which viewer to use, see “Comparison of Viewers” on page 7-2.

Host and Remote Viewing
You can view a virtual world on your host computer, with either the Simulink 3D Animation Viewer,
Orbisnap, or a web browser. For web browser support, Simulink 3D Animation provides the Simulink
3D Animation Web Viewer.

In most configurations, you do not need to install a viewer on a client computer because you can
perform all the tasks on a host computer. However, if you have large models that consume
considerable computational resources, you can use a client computer to run and view the virtual
world.

To view a virtual world on a client computer, which does not need to have Simulink 3D Animation
installed, you can use the Web Viewer, or Orbisnap. For remote viewing, use the Web Viewer or
Orbisnap.

Comparison of Viewers
Feature Simulink 3D Animation

Viewer
Simulink 3D AnimationWeb
Viewer

Orbisnap

Platforms Windows, Macintosh, and
Linux

Windows, Macintosh, and
Linux

Windows, Macintosh, and
Linux

Web browser HTML5-enabled web browser
Installation Installed with product Host interface installed with

product
Separate installation

Simulink 3D Animation
required

Yes

Remote viewing Yes Yes
Viewpoint creation Yes
Animation start/stop Yes Starts automatically

7 Viewing Virtual Worlds

7-2

Feature Simulink 3D Animation
Viewer

Simulink 3D AnimationWeb
Viewer

Orbisnap

Simulation start/stop Yes
Sound Yes Yes
Stereoscopic viewing Yes Yes

See Also
Functions
vrgetpref | vrsetpref

Related Examples
• “Set the Default Viewer” on page 2-2
• “Set Simulink 3D Animation Preferences” on page 2-5
• “Open the Simulink 3D Animation Viewer” on page 7-7
• “Specify Rendering Techniques” on page 7-9
• “Navigate Using the Simulink 3D Animation Viewer” on page 7-15
• “Navigate Through Viewpoints” on page 7-26
• “Simulate with the Simulink 3D Animation Viewer” on page 7-8
• “Record Offline Animations” on page 7-29
• “Capture Frames” on page 7-37
• “Play Animations with Simulink 3D Animation Viewer” on page 7-35
• “Install V-Realm Editor” on page 2-14

More About
• “Simulink 3D Animation Viewer” on page 7-4
• “Set Viewpoints” on page 7-23
• “Simulink 3D Animation Web Viewer” on page 7-38

 Virtual World Viewers

7-3

Simulink 3D Animation Viewer
In this section...
“What You Can Do with the Viewer” on page 7-4
“Viewer Uses MATLAB Figures” on page 7-5
“Set Viewer Appearance Preferences” on page 7-6

What You Can Do with the Viewer
This section provides an overview of the features and controls of the viewer.

This section uses the vrpend, vrplanets, and vrtut1 examples to illustrate the viewer features:

1 Select a Simulink 3D Animation example and type the example name in the MATLAB Command
Window. For example:

vrpend

The Simulink model is displayed. By default, the Simulink 3D Animation viewer for that model is
loaded and becomes active. If the viewer is not displayed, double-click the VR Sink block in the
Simulink model.

2 Inspect the viewer window.

The Simulink 3D Animation viewer displays the virtual scene. The top of the viewer contains a
menu bar and toolbar. By default, the Simulink 3D Animation viewer displays the virtual scene
with a navigation panel at the bottom. These three areas of the viewer give you alternate ways to
work with the virtual scene.

7 Viewing Virtual Worlds

7-4

Note The Simulink 3D Animation viewer settings are saved when you save your model file.

Viewer Uses MATLAB Figures
The Simulink 3D Animation software contains a viewer as the default method for viewing virtual
worlds. You can use this viewer on any supported operating system. This viewer uses MATLAB
figures. It provides several capabilities, including:

• Treat the viewer window like a MATLAB figure. This ability enables you to perform MATLAB figure
actions such as dock the viewer window in the MATLAB window. For example:

• To display a context menu that contains the viewer commands, right-click in the viewer window.
For example:

 Simulink 3D Animation Viewer

7-5

• Combine multiple virtual reality viewer figures in several tiles of a MATLAB figure.

Set Viewer Appearance Preferences
You can configure the appearance of the viewer using Simulink 3D Animation preferences. For
details, see “Figure Appearance Preferences Dialog Box” on page 2-8.

See Also
Functions
vrgetpref | vrsetpref

Related Examples
• “Open the Simulink 3D Animation Viewer” on page 7-7
• “Set Simulink 3D Animation Preferences” on page 2-5

More About
• “Virtual World Viewers” on page 7-2

7 Viewing Virtual Worlds

7-6

Open the Simulink 3D Animation Viewer
In this section...
“Open from the VR Sink Block” on page 7-7
“Open from the Command Line” on page 7-7

Open from the VR Sink Block
You can open the Simulink 3D Animation Viewer by double-clicking a VR Sink block in the Simulink
Editor.

You can configure a VR Sink block to automatically open the Simulink 3D Animation Viewer.

1 In the Simulink Editor, double-click the VR Sink block to open the Simulink 3D Animation Viewer.
2 From the Simulink 3D Animation Viewer Simulation menu, select Block parameters.
3 Select Open Viewer automatically.
4 Click OK.

Open from the Command Line
Use vrview. For example, to open the vrbounce virtual world in the Simulink 3D Animation Viewer,
use vrview('vrbounce').

See Also
Functions
vrgetpref | vrsetpref

Related Examples
• “Set the Default Viewer” on page 2-2
• “Set Simulink 3D Animation Preferences” on page 2-5

More About
• “Virtual World Viewers” on page 7-2

 Open the Simulink 3D Animation Viewer

7-7

Simulate with the Simulink 3D Animation Viewer
You can start and stop simulations of the virtual world from the Simulink 3D Animation viewer
through the menu bar, toolbar, or keyboard.

• From the menu bar, select the Simulation menu Start or Stop option.
• From the toolbar, click Start/pause/continue simulation or Stop simulation.
• From the keyboard, press Ctrl+T to toggle between starting or stopping the simulation.

Note The Ctrl+T operation is available only if you started the viewer from a Simulink model. If
you start the viewer through the MATLAB interface, no Simulink model is associated with the
viewer. You cannot start and stop the simulation in this case.

Adjust Navigation Settings
During simulation of a model, objects in the associated virtual world displayed in the Simulink 3D
Animation can disappear as the objects get closer to the viewer or go away from the user. In the
virtual world, you can adjust how the near and far clipping planes (which control when objects
disappear as they move toward or away from the viewer) are calculated. In the NavigationInfo
node, you can adjust the avatarSize and VisibilityLimit fields to adjust the clipping planes so
that the objects are visible during the simulation.

For example, suppose the virtual world has a static large scene with no close object in view, and the
simulation causes an airplane to move nearby from the left to the right of your view. This example
shows some of the NavigationInfo fields that you can adjust:

See Also

Related Examples
• “Open the Simulink 3D Animation Viewer” on page 7-7

7 Viewing Virtual Worlds

7-8

Specify Rendering Techniques
You can change the rendering of the scene through the controls on the navigation panel or options on
the rendering menu. The vrpend and vrplanets examples are used to show the viewer
functionality.

You can turn the antialiasing of the scene on or off. Antialiasing applies to the textures of a world.
Antialiasing is a technique that attempts to smooth the appearance of jagged lines. These jagged lines
are the result of a printer or monitor not having enough resolution to represent a line smoothly. When
Antialiasing is on, the jagged lines are surrounded by shades of gray or color. Therefore, the lines
appear smoother rather than jagged.

The following figure depicts the vrplanets example View on Earth viewpoint with Antialiasing on.
To display the effects of antialiasing better, turn Headlight on. You can turn antialiasing on or off to
observe the differences.

You can turn the camera headlight and the lighting of the scene on or off. When Headlight is off, the
camera does not emit light. Therefore, the scene can appear dark. For example, the following figure
depicts the vrpend example with Headlight on.

 Specify Rendering Techniques

7-9

matlab:vrpend

The scene looks darker when Headlight is set to off.

Note It is helpful to define enough lighting within the virtual scene so that it is lit regardless of the
Headlight setting.

7 Viewing Virtual Worlds

7-10

When Lighting is off, the virtual world appears as if lit in all directions. The Simulink 3D Animation
viewer does not compute and render all the lighting effects at the surfaces of the objects. Shadows
disappear and the scene loses some of its 3-D quality. The following is the vrpend example with
Lighting off.

If Transparency is off, transparent objects are rendered as solid objects.

 Specify Rendering Techniques

7-11

Turning Wireframe on changes the scene objects from solid to wireframe rendering. The following is
the vrpend example with Wireframe on.

If the Textures option is on, objects have texture in the virtual scene. Here is the vrplanets
example with Textures on:

7 Viewing Virtual Worlds

7-12

If Textures is off, objects do not have texture in the virtual scene. The following is the vrplanets
example with Textures off.

You can specify the maximum size of a texture used in rendering the vrfigure object. This option
gives you a list of texture sizes to choose from. See the vrfigure MaxTextureSize property for
further details.

 Specify Rendering Techniques

7-13

Turn Off Rendering for Performance
You can use the Rendering property for either a vrfigure or vr.canvas object to turn off
rendering for the object in the Simulink 3D Animation Viewer. For example, if your code does batch
operations on a virtual figure, you can turn off rendering during that processing and then turn it back
on after the processing.

You can also use the new Simulink 3D Animation > World > Default Figure Rendering
preference (DefaultFigureRendering) to specify whether to render a newly created virtual figure
or canvas object.

See Also
Functions
vrgetpref | vrsetpref | vrworld | vr.canvas

Related Examples
• “Set Simulink 3D Animation Preferences” on page 2-5

More About
• “Virtual World Viewers” on page 7-2

7 Viewing Virtual Worlds

7-14

Navigate Using the Simulink 3D Animation Viewer
In this section...
“Basic Navigation” on page 7-15
“Navigation Panel” on page 7-16
“Viewer Keyboard Shortcuts” on page 7-18
“Mouse Navigation” on page 7-18
“Navigation Control Menu” on page 7-19
“Change the Navigation Speed” on page 7-19
“Sensors Effect on Navigation” on page 7-20
“Display a Coordinate Axes Triad” on page 7-20
“Pivot Point” on page 7-21

Basic Navigation
You can navigate in a virtual scene using the menu bar, toolbar, navigation panel, mouse, and
keyboard. The vrbounce example illustrates some key features of the viewer.

Navigation Panel — The center navigation wheel and two curved buttons on either side allow you to
move about in the scene. Experiment by moving backward and forward and side to side.

Navigation view — You can change the camera position. From the menu bar, select the Navigation
menu Straighten Up option. Alternatively, from the toolbar, click the Straighten Up control, or on
the keyboard, you can press F9. This option resets the camera so that it points straight ahead.

Navigation methods — Navigation with the mouse depends on the navigation method that you
select and the navigation zone that you are in when you first click and hold down the mouse button.
You can set the navigation method using one of these approaches:

 Navigate Using the Simulink 3D Animation Viewer

7-15

• From the menu bar, select the Navigation menu Method option. This option provides three
choices: Walk, Examine, or Fly. See “Mouse Navigation” on page 7-18.

• From the toolbar, select the drop-down list that displays the navigation options Walk, Examine,
and Fly.

• From the navigation panel, click the W, E, or F buttons.
• On the keyboard, press Shift+W, Shift+E, Shift+F, or Shift+N.

Navigation zones — You can view the navigation zones for a scene by using the menu bar or
keyboard.

From the menu bar, select the View menu Navigation Zones option. The virtual scene changes as
the navigation zones are toggled on and appear in the virtual scene. Alternatively, on the keyboard,
press the F7 key.

The vrbounce example with Method set to Fly has three navigation zones.

Navigation Panel
The Simulink 3D Animation viewer navigation panel has navigation controls for some of the more
commonly used navigation operations available from the menu bar.

7 Viewing Virtual Worlds

7-16

If you have multiple viewers open, the navigation panel in the active viewer is blue.

Minimize the Navigation Panel

You can minimize the navigation panel using either of these approaches:

• Click the red x control on the left side of the navigation panel.
• Select View > Navigation Panel > Minimized

The minimized navigation panel appears as an icon in the lower right corner of the viewer.

To display the navigation panel again, click the Show Panel left arrow on the minimized navigation
panel icon.

To minimize the navigation panel by default, from the MATLAB Toolstrip, set the Preferences >
Simulink 3D Animation > Canvas > Navigation panel preference to minimized.

The minimized navigation panel is blue for the active viewer and gray for the inactive viewers.

 Navigate Using the Simulink 3D Animation Viewer

7-17

Viewer Keyboard Shortcuts
Navigation Function Keyboard Shortcut
Use full-screen mode. Ctrl+f
Undo move. Backspace
Start or stop recording. Ctrl+r
Capture frame. Ctrl+i
Start or stop simulation. Ctrl+t
Straighten up and make the camera stand on the
horizontal plane of its local coordinates.

F9

Zoom in and out. +/-
Toggle the headlight on and off. F6
Toggle the navigation zones on and off. F7
Toggle the wireframe option on and off. F5
Toggle the antialiasing option on and off. F8
Go to default viewpoint. Esc
Return to current viewpoint. Home
Go to previous viewpoint. Page Up
Go to next viewpoint. Page Down
Camera is bound/unbound from the viewpoint. F10
Set the navigation method to Walk. Shift+w
Set the navigation method to Examine. Shift+e
Set the navigation method to Fly. Shift+f
Move the camera forward and backward. Shift Up/Down Arrow
Pan the camera up and down. Up/Down Arrow
Pan the camera right and left. Left/Right Arrow, Shift+Left/Right

Arrow
Slide up and down. Alt+Up/Down Arrow
Slide left and right. Alt+Left/Right Arrow
Pressing Ctrl alone acquires the examine lock at the point
of intersection between the line perpendicular to the
screen, coming through the center of the viewer window,
and the closest visible surface to the camera. Pressing the
arrow keys without releasing Ctrl rotates the viewpoint
about the acquired center point.

Ctrl+Left/Right/ Up/Down Arrow

Tilt the camera right and left. Shift+Alt+Left/ Right Arrow

Mouse Navigation
When you use your mouse to navigate through a virtual world, the behavior depends on the
movement modes and navigation zones. Turn on the navigation zones and experiment by clicking and
dragging your mouse in the different zones of a virtual world.

7 Viewing Virtual Worlds

7-18

Simulink 3D Animation Viewer Mouse Navigation

Movement Mode Zone and Description
Walk Outer — Click and drag the mouse up, down, left, or right to slide the

camera in any of these directions in a single plane.

Inner — Click and drag the mouse up and down to move forward and
backward. Drag the mouse left and right to turn left or right.

Examine Outer — Click and drag the mouse up and down to move forward and
backward. Drag the mouse left and right to slide left or right.

Inner — Click and drag the mouse to rotate the viewpoint around the
origin of the scene.

Fly Outer — Click and drag the mouse to tilt the view either left or right.

Inner — Click and drag the mouse to pan the camera up, down, left, or
right within the scene.

Center — Click and drag the mouse up and down to move forward and
backward. Move the mouse left or right to turn in either of these
directions.

If your virtual world contains sensors, these sensors take precedence over mouse navigation at the
sensor location. For more information, see “Sensors Effect on Navigation” on page 7-20.

Navigation Control Menu
Access the control menu by right-clicking in the viewer window. You can use the control menu to
specify a predefined viewpoint or change the appearance of the control panel. You can also control
the navigation method, speed, and rendering of the virtual world. For more information about
navigation methods, see “Navigate Using the Simulink 3D Animation Viewer” on page 7-15. For more
information about rendering, see “Specify Rendering Techniques” on page 7-9.

Change the Navigation Speed
You can change the speed at which you navigate around the view.

1 In the menu bar, select the Navigation menu.
2 Select the Speed option.
3 Select the specific speed that you want.
4 Navigate the virtual world.

Note Your navigation speed controls the distance that you move with each keystroke. It does not
affect rendering speed.

Consider setting a higher speed for large scenes and a slower speed for more controlled navigation in
smaller scenes.

To change the default navigation speed for a virtual scene, modify the speed field of the
NavigationInfo node in the scene virtual world 3D file.

 Navigate Using the Simulink 3D Animation Viewer

7-19

Sensors Effect on Navigation
1 At the MATLAB command prompt, type

vrpend

The Inverted Pendulum example starts, and the viewer displays this scene.

2 In the Simulink Editor window, from the Simulation menu, choose Run.

The example starts running.
3 Click inside and outside the sensor area of the viewer window. The sensor takes precedence over

navigation with the left mouse button. The shape of your pointer changes when it is located over
the sensor area.

If the sensor covers the entire navigable area, mouse navigation is effectively disabled. In this case,
use the control panel or the keyboard to move about the scene. For a three-button mouse or a mouse
with a clickable wheel, you can use the middle button or the wheel to move about the scene. The
middle mouse button and wheel do not trigger sensors within the virtual world.

Display a Coordinate Axes Triad
To help you visualize changes in the orientation (coordinate axes) of nodes in a virtual world, display
a triad of red, green, and blue arrows. These arrows are always parallel with global x, y, and z
coordinate axes. As you navigate in a virtual world, the triad display changes to reflect changes in
orientation.

7 Viewing Virtual Worlds

7-20

To display a triad in the viewer, or to change the location of the triad, use either of these approaches:

• Right-click in the virtual world. Select the appropriate option from the View > Triad menu.
• In the viewer menu bar, select the appropriate option from the View > Triad menu.

To change the default location or visibility of the triad:

1 From the MATLAB Toolstrip, in the Home tab, in the Environment section, select Preferences.
2 In the Preferences dialog box, select Simulink 3D Animation > Figure > Triad.

Pivot Point
To use a mouse to rotate a virtual world around a point, In Examine mode, you can use a pivot point.

To set the pivot point in a virtual world, hold Ctrl and double-click the spot where you want the pivot
point.

Note On Macintosh platforms, use the command key instead of Ctrl.

See Also
Functions
vrgetpref | vrsetpref

Related Examples
• “Define Viewpoints” on page 7-23
• “Navigate Through Viewpoints” on page 7-26

 Navigate Using the Simulink 3D Animation Viewer

7-21

More About
• “Virtual World Viewers” on page 7-2
• “Simulink 3D Animation Viewer” on page 7-4

7 Viewing Virtual Worlds

7-22

Set Viewpoints

In this section...
“Define Viewpoints” on page 7-23
“Reset Viewpoints” on page 7-25

Visitors to your virtual world navigate in an environment that you create for them, using navigation
methods allowed by the viewer (Walk, Examine, Fly). It is useful to set up in the world several
locations, places of interest you want to point the visitors to. These locations are called viewpoints.
Visitors can browse through them, carrying out a guided tour you prepared for them, gaining the
visual information you consider important in your model.

When entering a world, your are placed at the first Viewpoint node encountered in the file. It is
especially important to define this viewpoint carefully as the most interesting entry point.

Each virtual world has as many viewpoints as you define for it. You can define viewpoints in the
virtual world through your chosen editor or through the Simulink 3D Animation viewer.

Defined viewpoints can be:

• Static — usually created at the top level of the virtual world object hierarchy or as children of
static objects (Transforms).

• Dynamic — created as children of moving objects (objects driven from MATLAB/Simulink) or
linked to them using the VRML ROUTE mechanism.

Dynamic viewpoints allow you to create interesting effects like view at the driving range from the
view of the driver.

Define Viewpoints
You can add new viewpoints to the virtual world through the menu bar or toolbar. You can start the
simulation before creating viewpoints. This procedure assumes that the model is not currently
running.

1 Select a Simulink 3D Animation example and type that example name in the MATLAB Command
Window. For example:

vrplanets

The Simulink model is displayed. Also, by default, the Simulink 3D Animation viewer for that
model is loaded and becomes active. If the viewer is not displayed, double-click the VR Sink block
in the Simulink model.

In the Simulink 3D Animation viewer, the default viewpoint for this model is View from top.
2 From the menu bar, choose the Viewpoints > View on Earth.
3 In the viewer window, navigate to a random position in the scene.
4 Select the ViewpointsCreate Viewpoint.

 Set Viewpoints

7-23

5 For the Name parameter, enter a unique and descriptive name for the viewpoint.
6 Specify the placement of the viewpoint. Set Placement to Child of the root. This option

makes the viewpoint a static one.

The availability the Placement parameter depends on the current viewpoint. If the current
viewpoint is at the top hierarchy level in the virtual world (one of the children of the root), the
parameter is grayed out. In this case, it is only meaningful to create the viewpoint at the same
top hierarchy level.

7 To make the new viewpoint the current viewpoint for the view, select Jump to new viewpoint
immediately and click OK. If you do not select this option, you still create a viewpoint, but you
remain bound to the current viewpoint, not to the new viewpoint.

8 Save the file with the new viewpoint, using FileSave As. If you do not save the file, the new
viewpoint is lost during simulation.

9 Simulate the model by selecting Simulation Start. Observe the motion of the planets from the
new, static viewpoint. Then stop the simulation.

10 Create another viewpoint.
11 Create a viewpoint at the same level in the virtual world object hierarchy as the child of the

parent transform of the current viewpoint. Set Placement to Sibling of the current
viewpoint. The local coordinate system of the parent transform defines the new viewpoint
coordinates. As a result, the new viewpoint moves with the parent transform. The new viewpoint
also keeps the position relative to the transform (offset) that you first defined by navigating
somewhere in the space from the current viewpoint.

Note If the current viewpoint is at the top hierarchy level in the virtual world (one of the
children of the root), the Placement field is grayed out. In this case, it is only meaningful to
create the viewpoint as a static one at the same top hierarchy level.

12 Make the new viewpoint the current viewpoint for the viewer. Select Jump to new viewpoint
immediately and click OK. If you do not select this option, you still create a viewpoint, but you
remain bound to the current viewpoint, not to the new viewpoint.

13 Save the file with the new viewpoint. If you do not save the file, the new viewpoint is lost during
simulation.

14 Simulate the model. Observe that the relative position between the new viewpoint and Earth
remains the same. The new viewpoint moves together with its parent object Earth transform.

7 Viewing Virtual Worlds

7-24

Reset Viewpoints
You can reset your position in a scene to the initial default or current viewpoint position through the
menu bar, toolbar, navigation panel, or keyboard shortcut keys.

• From the menu bar, use the Viewpoints menu Return to viewpoint option to return to the initial
position of the current viewpoint. Alternatively, from the toolbar, select Return to viewpoint
button to return to the initial position of the current viewpoint.

• From the navigation panel, click the Go to default viewpoint control to return to the default
viewpoint of the virtual world. Alternatively, from the menu bar, use the Viewpoints menu Go to
Default Viewpoint option to return to the default viewpoint of the virtual world.

• From the keyboard:

• To return to the default viewpoint of the virtual world, press the Esc key.
• To return to the initial position of the current viewpoint, press the Home key.

 Set Viewpoints

7-25

Navigate Through Viewpoints
You can navigate through viewpoints using the menu bar, toolbar, navigation panel, or keyboard
shortcut keys. These navigation methods are inactive if the author has specified no or only one
viewpoint in the virtual world.

• From the menu bar, use the Viewpoints menu to move between viewpoints. Use the Previous
Viewpoint and Next Viewpoint options to move up and down the list of existing viewpoints
sequentially. To move focus to a particular viewpoint, choose a viewpoint from the list of
viewpoints.

• From the toolbar, use the drop-down list of viewpoints to select a particular viewpoint.
• From the navigation panel, use the Previous Viewpoint and Next Viewpoint controls to move up

and down the list of existing viewpoints sequentially.
• From the keyboard, press Page Up and Page Down.

To reset a camera to the initial position of the current viewpoint, use one of the methods listed in
“Reset Viewpoints” on page 7-25. Resetting the viewpoint is useful to reorient yourself when you have
been moving about the scene.

This topic illustrates viewpoints using the vrplanets example.

1 Select a Simulink 3D Animation example and type that example name in the MATLAB command
window. For example:

vrplanets

The Simulink model is displayed. By default, the Simulink 3D Animation viewer for that model is
loaded and becomes active. If the viewer is not displayed, double-click the VR Sink block in the
Simulink model.

2 From the menu bar, select the Viewpoints menu.

A menu of the viewpoint options is displayed. Included is a list of the existing viewpoints.

3 To see the list of existing viewpoints from the toolbar, select the drop-down list on the leftmost
side of the toolbar. The status bar at the bottom of the viewer displays the current viewpoint.

7 Viewing Virtual Worlds

7-26

When you add new viewpoints to the world, these lists are updated to reflect the new viewpoints.

The current viewpoint is also displayed in the left pane of the status bar.

You manage and navigate through viewpoints from the menu bar, toolbar, navigation panel, and
keyboard. In particular, you can

• Navigate to a previous or next viewpoint
• Return to the initial position of the current viewpoint
• Go to the default viewpoint
• Create and remove viewpoints
• Navigate to an existing viewpoint

See Also

Related Examples
• “Define Viewpoints” on page 7-23

 Navigate Through Viewpoints

7-27

More About
• “Set Viewpoints” on page 7-23

7 Viewing Virtual Worlds

7-28

Record Offline Animations
In this section...
“Animation Recording” on page 7-29
“Recording Formats” on page 7-29
“File Names” on page 7-30
“Start and Stop Animation Recording” on page 7-30
“Play Animation Files” on page 7-31
“Record 3–D Animation Files” on page 7-31
“Record in Audio Video Interleave (AVI) Format” on page 7-31
“Schedule Files for Recording” on page 7-33

Animation Recording
The Simulink 3D Animation software enables you to record animations of virtual scenes that the
Simulink or MATLAB product controls. You can record simulations using the Simulink 3D Animation
Viewer. You can then play back these animations offline, in other words, independent of the MATLAB,
Simulink, or Simulink 3D Animation products. You can generate such files for presentations, to
distribute simulation results, or to generate archives.

Note Optimally, use the Simulink 3D Animation Viewer to record animations of virtual worlds
associated with Simulink models. This method ensures that all necessary virtual world and vrfigure
properties are properly set to record simulations. If you are working with virtual scenes controlled
from MATLAB, you can record virtual scenes through the MATLAB interface. For details, see
“Animation Recording” on page 4-10.

You can save a frame snapshot (capture) of the current Simulink 3D Animation viewer scene. You can
save this frame as either a TIF or PNG format file. For details, see “Capture Frames” on page 7-37.

Recording Formats
You can save the virtual world offline animation data in the following formats:

• 3D file — The Simulink 3D Animation software traces object movements and saves that data into a
virtual world 3D file using standard interpolators. You can then view these files with the Simulink
3D Animation Viewer. 3-D files typically use much less disk space than Audio Video Interleave
(AVI) files. If you make any navigation movements in the Simulink 3D Animation Viewer while
recording the animation, the Simulink 3D Animation software does not save any of these
movements.

Note If you distribute virtual world 3D animation files, distribute all the inlined object and texture
files referenced in the original virtual world 3D file.

• 2-D Audio Video Interleave (AVI) file — The Simulink 3D Animation software writes animation data
into an .avi file. The Simulink 3D Animation software uses vrfigure objects to record 2-D
animation files. The recorded 2-D animation reflects exactly what you see in the viewer window. It
includes any navigation movements you make during the recording.

 Record Offline Animations

7-29

Note While recording 2-D .avi animation data, always ensure that the Simulink 3D Animation
Viewer is the topmost window and fully visible. Graphics acceleration limitations can prevent the
proper recording of 2-D animation otherwise.

See the following topics:

• “Record 3–D Animation Files” on page 7-31 — Describes how to configure the record simulation
parameters to create 3-D format animation files.

• “Record in Audio Video Interleave (AVI) Format” on page 7-31 — Describes how to configure the
record simulation parameters to create 2-D format animation files.

• “Schedule Files for Recording” on page 7-33 — Describes how to schedule record simulation
operations to occur automatically.

File Names
By default, the Simulink 3D Animation Viewer records simulations or captures virtual scene frames in
a file named with the following format:

%f_anim_%n.%e

This format creates a unique file name each time you capture a frame or record the animation. The
file name uses the %f, %n, and %e tokens.

The %f token is replaced with the name of the virtual world associated with the model. The %n token
is a number that increments each time that you record a simulation for the same virtual world. For
example, if the name of the virtual world file is vrplanets.wrl and you record a simulation for the
first time, the animation file is vrplanets_anim_1.wrl. If you record the simulation a second time,
the animation file name is vrplanets_anim_2.wrl. In the case of frame captures, capturing
another frame of the scene increments the number.

The %e token represents the virtual world 3D file extension (.wrl, .x3d, or .x3dv) as the extension
of the virtual world that drives the animation. By default, the %e token uses the file extension of the
virtual world 3D file that drives the animation. The VR Sink and VR Source block Source file
parameter specifies the file extension of the virtual world.

You can specify other file name tokens. For details, see “File Name Tokens” on page 4-14.

Start and Stop Animation Recording
You can start or stop recording animations of the virtual world from the Simulink 3D Animation
viewer through the menu bar, toolbar, or keyboard. This section assumes that you have specified
animation files for recording the animation.

• From the menu bar, choose the Simulation menu, Run option to start recording the animation
(select Stop to stop the recording).

• From the toolbar, click the Start/stop recording button to start or stop recording the animation
(select Stop to stop the recording). Alternatively, you can use the Recording menu Start
Recording and Stop Recording options. From the keyboard, press Ctrl+R to toggle between
starting or stopping the animation recording.

• Stop the simulation or let the model simulate until the defined simulation stop time.

7 Viewing Virtual Worlds

7-30

Note If you stop the simulation while recording is enabled, the viewer also stops recording the
animation.

Play Animation Files
You can view animation files using the 3D Animation Player or vrplay. For details, see “Play
Animation Files” on page 4-27.

Record 3–D Animation Files
To create a 3-D animation files from a Simulink model execution, set recording parameters. You can
start the simulation before setting up the recording.

1 In the MATLAB Command Window, type the model name. For example:

vrplanets

The Simulink model is displayed. Also, by default, the Simulink 3D Animation viewer for that
model is loaded and becomes active. If the viewer is not displayed, double-click the VR Sink block
in the Simulink model.

2 From the Recording menu, choose Capture and Recording Parameters.

The Capture and Recording Parameters dialog box is displayed.
3 Find the Recording section of the dialog. This is located under the Frame Capture dialog.
4 Select the Record to 3D file check box.

The File text field becomes active and the default file name, %f_anim_%n.wrl, appears in the
text field.

To save files to other file names, see “File Name Tokens” on page 4-14.
5 Click OK.

After you define an animation file, you can manually record simulations. See “Start and Stop
Animation Recording” on page 7-30. If you want to record simulations on a schedule, see “Schedule
Files for Recording” on page 7-33.

Record in Audio Video Interleave (AVI) Format
To create a 2-D AVI format file from a Simulink model execution, set recording parameters. You can
start the simulation before setting up the recording.

1 In the MATLAB Command Window, type the model name. For example:

vrplanets

The Simulink model is displayed. Also, by default, the Simulink 3D Animation viewer for that
model is loaded and becomes active. If the viewer is not displayed, double-click the VR Sink block
in the Simulink model.

2 From the Recording menu, choose Capture and Recording Parameters.

The Capture and Recording Parameters dialog box is displayed.

 Record Offline Animations

7-31

3 Find the Recording section of the dialog box, located under the Frame Capture dialog box.
4 Select the Record to AVI file check box.

The File text field and Compression selection area become active, and the default file name,
%f_anim_%n.avi, appears in the text field.

To save files to other file names, see “File Name Tokens” on page 4-14.
5 Set the FPS (Frames Per Second) to an appropriate value.

To use the sample time of the associated VR Sink block to make the file playback correspond to
the model simulation time, set FPS to auto.

For example, to record a Simulink simulation with 25 frames per second (of the simulation time),
in the VR Sink block set Sample time to be 0.04. In that situation, to create an AVI file where
one second of simulation time corresponds to one second of AVI file playback time, set the FPS
parameter to auto. Simulink 3D Animation saves the value 25 into the AVI file FPS parameter.

Note An FPS setting of 15 is used, even if you set FPS to auto:

• For a virtual world not associated with a Simulink model.
• If the sample time of the associated VR Sink block cannot be determined at simulation start

time.

6 From the Compression list, select a compression method for the .avi file. Because .avi files
can become large, you can compress the .avi file.

Choose from

7 Viewing Virtual Worlds

7-32

• Autoselect — Allows the Simulink 3D Animation software to select the most appropriate
compression codec. This option allows you to specify a quality setting that is a number from 0
through 100. Higher-quality numbers result in higher video quality and larger file sizes.
Lower quality numbers result in lower video quality and smaller file sizes.

• Lossless — Forces the Simulink 3D Animation software to compress the animation file
without loss of data. (Typically, the compression of files sacrifices some data.)

• User Defined — Enables you to specify a particular compression codec. This option allows
you to specify a quality setting that is a number from 0 through 100. Higher-quality numbers
result in higher video quality and larger file sizes. Lower quality numbers result in lower
video quality and smaller file sizes. Specify an identification string of a codec that your system
supports.

• None — Prevents any compression for the animation file.
7 Disable the navigation panel. The navigation panel appears at the bottom of the virtual scene

view. You can turn off this panel for a cleaner view of the virtual scene. Choose View >
Navigation Panel > None.

You can reenable the Navigation Panel (for example, choose View > Navigation Panel >
Halfbar) after you are finished recording the .avi file.

8 Click OK.

After you define an animation file, you can record animations. See “Start and Stop Animation
Recording” on page 7-30. If you want to record animations on a schedule, see “Schedule Files for
Recording” on page 7-33.

Schedule Files for Recording
This topic describes how to schedule the recording of an animation using the MATLAB interface for a
virtual world that is associated with a Simulink model. In this case, the timing in an animation file
derives from the simulation time. One second of the recorded animation time corresponds to one
second of Simulink time. To schedule the recording of an animation file, you preset the simulation
time interval during which the animation recording occurs. This procedure uses the vrplanets
example. It assumes that you have already configured the recording parameters for an animation file.

1 In the MATLAB Command Window, type the model name. For example:

vrplanets

The Simulink model is displayed. Also, by default, the Simulink 3D Animation viewer for that
model is loaded and becomes active. If the viewer is not displayed, double-click the VR Sink block
in the Simulink model.

2 From the Recording menu, choose Capture and Recording Parameters.

The Capture and Recording Parameters dialog box is displayed. In the Recording section, this
dialog box contains the Record mode list. The Record mode list is enabled only if you also
select either or both of the Record to 3D and Record to AVI check boxes.

3 From the Record mode list, choose Scheduled.

The Start time and Stop time text fields are enabled.
4 Enter in Start time and Stop time the start and stop times during which you want to record the

animation. For example, enter 0 as the start time and 100 as the stop time.

 Record Offline Animations

7-33

Ensure that the recording start time value is not earlier than the start time of the Simulink
model; the recording operation cannot start in this instance. If the stop time exceeds the stop
time of the Simulink model, or if it is an out of bounds value such as a negative number, the
recording operation stops when the simulation stops.

Note You can also set the stop time before the start time to allow for a scenario where the
simulation starts first and you manually start recording. The recording then automatically stops
at stop time and automatically restarts at start time.

5 Click OK.

After you define the schedule, you can record simulations. See “Start and Stop Animation Recording”
on page 7-30.

Note You can override the recording schedule by starting or stopping the recording interactively.

See Also
Functions
vrplay

Related Examples
• “Play Animations with Simulink 3D Animation Viewer” on page 7-35
• “Configure Frame Capture Parameters” on page 7-36
• “Capture Frames” on page 7-37
• “Define File Name Tokens” on page 4-12

More About
• “Animation Recording” on page 4-10
• “File Name Tokens” on page 4-14

7 Viewing Virtual Worlds

7-34

Play Animations with Simulink 3D Animation Viewer
To play animation files, you can use a web browser or you can use the Simulink 3D Animation Viewer
using one of these approaches:

At the MATLAB command line, use vrview. For example, enter:

w=vrview('vrplanets_anim_1.wrl');
set(w,'TimeSource','freerun');

The vrview command displays the default Simulink 3D Animation Viewer for the animation file.
Setting the TimeSource property of the set method to 'freerun' directs the viewer to advance its
time independent of the MATLAB software.

To stop the animation, type:

set(w,'TimeSource','external');

To close the viewer and delete the world, get the handle of the vrfigure object and close it:

f=get(w,'Figures')
close(f);
delete(w);

Or, to close all vrfigure objects and delete the world, type

vrclose
delete(w);

See Also
Functions
vrplay

Related Examples
• “Record Offline Animations” on page 7-29
• “Configure Frame Capture Parameters” on page 7-36
• “Capture Frames” on page 7-37
• “Define File Name Tokens” on page 4-12

More About
• “Animation Recording” on page 4-10
• “File Name Tokens” on page 4-14

 Play Animations with Simulink 3D Animation Viewer

7-35

Configure Frame Capture Parameters
This topic describes how to configure and capture a frame, using the vrplanets example as the
example.

1 In the MATLAB Command Window, type

vrplanets

at the MATLAB command prompt. The Planets example starts.
2 From the Recording menu, choose Capture and Recording Parameters.

The Capture and Recording Parameters dialog box is displayed.
3 Find the Frame Capture section at the top of the dialog box.

The file name %f_anim_%n.tif appears in the first text field, File.
4 Leave this file name as is.
5 In the File Format list, tif or png specify the graphic file format for the captured frame. The

default is tif. For this procedure, leave this format setting at tif.

6 You can disable the navigation panel. The navigation panel appears at the bottom of the virtual
scene view. You can turn off this panel for a cleaner view of the virtual scene. Choose View >
Navigation Panel > None.

You can reenable the Navigation Panel (for example, choose View > Navigation Panel >
Halfbar) after you finish recording the .tif file.

7 Click OK.

With this configuration, each subsequent capture of a scene in the same world increments the file
name number (%n) and saves it in a tif file.

See Also

Related Examples
• “Record Offline Animations” on page 7-29
• “Capture Frames” on page 7-37
• “Define File Name Tokens” on page 4-12

7 Viewing Virtual Worlds

7-36

Capture Frames
The Simulink 3D Animation product allows you to save a frame snapshot (capture) of the current
Simulink 3D Animation viewer scene. You can save this frame as either a TIF or PNG format file. You
can later view this scene offline (in other words, without the Simulink 3D Animation viewer). You can
treat this frame capture file like any other TIF or PNG file, such as print it, include it in other files.

After you complete the steps in “Configure Frame Capture Parameters” on page 7-36, you can
capture frames of a virtual scene.

You can capture frames of the virtual world from the Simulink 3D Animation viewer through the menu
bar, toolbar, or keyboard. This section assumes that you have specified frame capture file formats.

These actions save the captures in files in the current folder.

• From the menu bar, choose Recording > Capture Frame to capture a frame.
• From the toolbar, click the Capture a frame screenshot button to capture a frame.
• From the keyboard, press Ctrl+I to capture a frame.

You can view the frame capture files using any tool that reads tif or png files, including the MATLAB
imread function. For example,

image(imread('vrplanets_anim_1.tif'))

See Also

Related Examples
• “Record Offline Animations” on page 7-29
• “Configure Frame Capture Parameters” on page 7-36
• “Define File Name Tokens” on page 4-12

 Capture Frames

7-37

Simulink 3D Animation Web Viewer
Use the Simulink 3D Animation Web Viewer to access virtual worlds with an HTML5-enabled web
browser. You can open a virtual world in Simulink 3D Animation on a host computer and then view it
remotely in a web browser on another computer. You do not need to install Simulink 3D Animation on
the remote computer.

The Web Viewer supplements the Simulink 3D Animation Viewer. It also supplements the Orbisnap
viewer, which comes with Simulink 3D Animation. Some benefits of the Web Viewer include:

• Multiplatform remote viewing of Simulink 3D Animation virtual worlds

• Support for HTML5-enabled browsers on Microsoft Windows, Macintosh, and Linux platforms
• No additional software installation required on client computers
• Access to HTML5 browser features for creating customized pages with virtual reality visualization

Note Because the Web Viewer accesses an HTML version of the virtual world, you cannot use it to
modify the virtual world (for example, to create viewpoints).

See Also
Functions
vrview

Related Examples
• “Open the Web Viewer” on page 7-39
• “Navigate Using the Web Viewer” on page 7-41
• “Listen to Sound in a Virtual World” on page 7-43
• “View a Virtual World in Stereoscopic Vision” on page 7-45

More About
• “Virtual World Viewers” on page 7-2
• “Active Stereoscopic Vision Configuration” on page 7-47

7 Viewing Virtual Worlds

7-38

Open the Web Viewer
In this section...
“Set up for Remote Viewing” on page 7-39
“Connect the Web Viewer” on page 7-39

Set up for Remote Viewing
To enable a person on a remote computer to use a web browser to view a virtual world that is
connected to a Simulink model:

1 In the Simulink 3D Animation Viewer, select Simulation > Block parameters > Allow viewing
from the Internet.

If the Simulink 3D Animation Viewer is the default viewer, you can open that viewer from the
Simulink Editor by double-clicking the VR Sink block.

2 Enable the Allow viewing from the Internet parameter.

Alternatively, to enable remote computers to view all opened virtual worlds with a web browser, in the
MATLAB Home tab, in the Environment section, use the Preferences > Simulink 3D Animation
> Allow viewing from the Internet preference.

Connect the Web Viewer
1 In Simulink 3D Animation, open the virtual world that you want to view.
2 On the computer from which you want to open the Web Viewer, open an HTML5-enabled browser

(supporting WebGL and WebSocket). The browser must have Javascript enabled.

Note For a list of HTML5-enabled browsers, see https://www.x3dom.org/?page_id=9.
3 Connect to the local host HTTP port. To open the Web Viewer on:

• The same computer on which Simulink 3D Animation runs, enter the following in your web
browser: http://localhost:8123/

• A remote computer that does not have Simulink 3D Animation, in the http://
localhost:8123 URL, replace localhost with the HTTP port of the host computer.

Note To change the HTTP port (for example, if a firewall blocks a port), set a different port
number and restart MATLAB. To change the HTTP port, in the MATLAB Home tab, in the
Environment section, use the Preferences > Simulink 3D Animation > HTTP Port>
preference.

4 In the Web Viewer, from the list of open virtual worlds, select the one that you want to view.

See Also
Functions
vrview

 Open the Web Viewer

7-39

https://www.x3dom.org/contact/

Related Examples
• “Navigate Using the Web Viewer” on page 7-41
• “Listen to Sound in a Virtual World” on page 7-43
• “View a Virtual World in Stereoscopic Vision” on page 7-45

More About
• “Simulink 3D Animation Web Viewer” on page 7-38
• “Virtual World Viewers” on page 7-2
• “Active Stereoscopic Vision Configuration” on page 7-47

7 Viewing Virtual Worlds

7-40

Navigate Using the Web Viewer
In this section...
“Display and Navigation” on page 7-41
“Keyboard Shortcuts” on page 7-41
“Web Viewer Preferences” on page 7-42

Display and Navigation
Most of the navigation features for the Web Viewer are the same as for the Simulink 3D Animation
Viewer and the 3D World Editor Virtual world display pane. For details about Simulink 3D
Animation Viewer navigation, see “Navigate Using the Simulink 3D Animation Viewer” on page 7-15.

Some differences between the two viewers include:

• The Web Viewer does not include a menu bar.
• For virtual worlds with undefined background colors, the Web Viewer uses the default canvas

color of the browser; the Simulink 3D Animation Viewer uses a black background.

The supported navigation features depend on what web browser you use. For example, when R2013b
was released, Firefox® was the only supported web browser that supports context menu options that
are specific to Simulink 3D Animation, such as viewpoints options.

To determine whether the HTML5-enabled browser that you want to use supports WebGL (Web
Graphics Library), see https://www.x3dom.org/?page_id=9.

Keyboard Shortcuts
Navigation Function Keyboard Shortcut
Straighten up and make the camera stand on the
horizontal plane of its local coordinates.

U

Toggle the headlight on and off. H
Toggle the navigation zones on and off. Z
Go to default viewpoint. Esc
Return to current viewpoint. R
Go to previous viewpoint. Page Up
Go to next viewpoint. Page Down
Set the navigation method to Walk. W
Set the navigation method to Examine. E
Set the navigation method to Fly. F
Move the camera forward and backward. Shift Up/Down Arrow
Pan the camera up and down. Up/Down Arrow
Pan the camera right and left. Left/Right Arrow, Shift+Left/Right

Arrow

 Navigate Using the Web Viewer

7-41

https://www.x3dom.org/contact/

Navigation Function Keyboard Shortcut
Tilt the camera right and left. Shift+Alt+Left/ Right Arrow
Slide up and down. Alt+Up/Down Arrow
Slide left and right. Alt+Left/Right Arrow
Set pivot point Double-click
Orbit around selected item (pivot point) Ctrl+Left/Right/Up/Down Arrow
Turn interactive mode on or off I
Set navigation mode to none N
Cycle through navigation speed presets G
Show or hide information panel D
Show or hide status bar S
Show or hide rendering information panel Spacebar
Cycle through navigation panel modes P

Web Viewer Preferences
The following Simulink 3D Animation preferences apply to the Web Viewer, and to the 3D World
Editor.

• Canvas > Navigation panel
• Figure > Appearance > Status bar
• Figure > Appearance > Navigation zones

To access the preferences, from the MATLAB Toolstrip, in the Home tab, in the Environment
section, select Preferences > Simulink 3D Animation.

See Also
Functions
vrview | vrgetpref | vrsetpref

Related Examples
• “Open the Web Viewer” on page 7-39
• “Set Simulink 3D Animation Preferences” on page 2-5
• “Listen to Sound in a Virtual World” on page 7-43
• “View a Virtual World in Stereoscopic Vision” on page 7-45

More About
• “Simulink 3D Animation Web Viewer” on page 7-38
• “Active Stereoscopic Vision Configuration” on page 7-47

7 Viewing Virtual Worlds

7-42

Listen to Sound in a Virtual World
In this section...
“System Requirements for Sound” on page 7-43
“Listen to Sound” on page 7-43

If a virtual world contains a Sound node and your computer supports sound, then you can listen to
the sound using these Simulink 3D Animation components:

• Simulink 3D Animation Viewer
• 3D Animation Player
• vr.canvas on a figure window

System Requirements for Sound
To listen to virtual world sound, use a computer setup that supports sound, including having:

• A sound card
• Speakers
• Operating system support, such as ALSA (Advanced Linux Sound Architecture) on Linux platforms

For an AudioClip node, use a mono or stereo WAV file in uncompressed PCM format.

Note A stereo sound source retains its channel separation during playback. Simulink 3D Animation
attenuates the sound based on the distance of the viewer from the sound location. The relative
position of the viewer to the sound location and the viewer direction in the virtual world do not affect
the stereo channels. There is no impact even if the Sound node has the spatialize field set to
true.

Listen to Sound
Simulink 3D Animation enables sound by default.

To change the default behavior so that sound is disabled, set the Simulink 3D Animation Figure >
Rendering > Sound preference to off.

In the Simulink 3D Animation Viewer or 3D Animation Player, to disable sound, right-click in the
virtual world and clear the Rendering > Sound option.

For a vr.canvas object, to disable sound, set the Sound property to 'off'.

To control volume, use your computer volume controls.

See Also

Related Examples
• “Add Sound to a Virtual World” on page 5-35

 Listen to Sound in a Virtual World

7-43

More About
• “Simulink 3D Animation Web Viewer” on page 7-38

7 Viewing Virtual Worlds

7-44

View a Virtual World in Stereoscopic Vision
In this section...
“Enable Stereoscopic Vision” on page 7-45
“Control Stereoscopic Effects” on page 7-45

You can view a virtual world using 3D effects, so that elements in the virtual world appear to come
forward or back from the plane of the monitor.

You can use stereoscopic vision with these Simulink 3D Animation components:

• 3D World Editor
• Simulink 3D Animation Viewer
• 3D Animation Player
• vr.canvas on a figure window
• Orbisnap

Simulink 3D Animation supports two stereoscopic vision approaches:

• Anaglyph — Use red/cyan 3D glasses. Viewing a virtual world in this mode causes the colors to
appear as almost grayscale. This approach does not require any special computer hardware or
software.

• Active stereo — Use active shutter 3D glasses. This approach preserves color effects and produces
more powerful 3D effects. Active stereo requires a specially configured computer and monitor
setup. For details, see “Active Stereoscopic Vision Configuration” on page 7-47.

Enable Stereoscopic Vision
By default, virtual worlds display without stereoscopic vision effects.

1 Right-click in the virtual world.
2 From the Rendering > Stereo 3D menu, select either Anaglyph or Active.

Note To enable stereoscopic vision by default, set the Simulink 3D Animation Figure > Rendering
> Stereo 3D preference to anaglyph or active.

Control Stereoscopic Effects
You can control the following stereoscopic effects interactively or using preferences.

 View a Virtual World in Stereoscopic Vision

7-45

Stereo 3D
Effect

Description Keyboard
Shortcut

Figure > Rendering
Preference

Camera offset Distance between the two points of
view (cameras) that produce the 3D
effect. The higher the offset, the
further apart the cameras are, and
thus the deeper the 3D effect.

Shift+K
increases the
offset.

Shift+J
decreases the
offset.

Stereo 3D Camera
Offset

The default value is 0.1.

Horizontal image
translation (HIT)

The horizontal relationship of the two
stereo images. By default, the
background image is at zero and the
foreground image appears to pop out
from the monitor toward the person
viewing the virtual world.

You can specify a value from 0
through 1, inclusive. The larger the
value, the further back the
background appears to be.

Shift+O
increases the
distance back
for the
background
image.

Shift+P
decreases the
distance back
for the
background
image.

Stereo 3D Horizontal
Image Translation

The default value is 0.

You can also control the camera offset and horizontal image translation programmatically, using
vr.canvas, vrfigure, and vr.utils.stereo3d. If you use a vr.utils.stereo3d object, you
can also control the color filters for the left and right cameras.

See Also
Functions
vr.utils.stereo3d

More About
• “Active Stereoscopic Vision Configuration” on page 7-47

7 Viewing Virtual Worlds

7-46

Active Stereoscopic Vision Configuration

In this section...
“Computer Platforms” on page 7-47
“Graphics Cards” on page 7-47
“Display Devices” on page 7-47
“Graphic Card Connection to Display Devices” on page 7-47
“Examples of Stereoscopic Vision Setups” on page 7-48

This section identifies system requirements for active stereoscopic vision configuration. For detailed
information to determine whether a system meets the Simulink 3D Animation active stereoscopic
vision requirements, consult the documentation for your systems.

Computer Platforms
You can use stereoscopic vision on properly configured Windows and Linux platforms. You cannot use
active stereoscopic vision on Macintosh platforms.

Graphics Cards
Your computer must have a stereo 3D graphic card that supports OpenGL-based stereoscopic vision,
together with appropriate system driver, such as:

• AMD® FirePro “W” series of cards (for example, W5000) that support HD3D Pro technology
• NVIDIA® Quadro cards that support 3D Vision Pro technology

Display Devices
To display the stereoscopic video output of a graphic card, use one of these 3D display devices.

• 3D-compliant monitor synchronized with active shutter glasses. Depending on the display
technology, enable synchronization using Infrared emitters, cables, or RF hubs. Some monitors
include an infrared (IR) emitter. Other monitors require a separate IR emitter.

• 3D television set that displays 3D content. For stereoscopic vision, you typically use active shutter
glasses or passive polarized glasses.

• Auto-stereoscopic display (monitor, display containing pair of video projectors, etc.).

Graphic Card Connection to Display Devices
Connect 3D graphic cards to 3D display devices using an interface such as DVI, HDMI, or
DisplayPort.

HDMI 1.4a and DisplayPort display interfaces natively expose the ability to transmit stereo images
using schemes described in their specifications. These interfaces allow for plug-and-play capability. It
is up to the display device to decode the image pairs and present them according to the presentation
technology they implement (active, passive, auto-stereoscopic).

 Active Stereoscopic Vision Configuration

7-47

The DVI interface does not offer native stereoscopic image transfer. To transfer and identify
stereoscopic images correctly, synchronize the graphic card output with the display device, using
synchronization signals transmitted through an additional cable, an IR emitter, or an RF hub.

Examples of Stereoscopic Vision Setups
Here are two possible configurations for using stereoscopic vision with Simulink 3D Animation:

• AMD FirePro “W” series of cards (for example, W5000) connected with an HDMI 1.4 cable to a 3D
television set

• NVIDIA Quadro cards (for example, Quadro K4000), a 3D vision-ready monitor connected using
dual DVI cable, and a 3D Vision Pro kit (an RF hub and active shutter glasses)

See Also

Related Examples
• “View a Virtual World in Stereoscopic Vision” on page 7-45

7 Viewing Virtual Worlds

7-48

Simulink 3D Animation Stand-Alone
Viewer

The Simulink 3D Animation stand-alone viewer, Orbisnap, allows you to visualize virtual worlds or
prerecorded animation files without running the MATLAB or Simulink 3D Animation products.

• “Orbisnap Viewer” on page 8-2
• “Install Orbisnap” on page 8-3
• “Start Orbisnap” on page 8-5
• “Orbisnap Interface” on page 8-6
• “Navigate Using Orbisnap” on page 8-9
• “View Animations or Virtual Worlds with Orbisnap” on page 8-12
• “View Virtual Worlds Remotely with Orbisnap” on page 8-13

8

Orbisnap Viewer

What Is Orbisnap?
The Simulink 3D Animation product includes Orbisnap. Orbisnap is a free, optional, stand-alone
virtual world viewer that does not require you to have either the MATLAB or Simulink 3D Animation
products running. You can use Orbisnap to:

• View prerecorded WRL animation files. For example, you can show prerecorded animation files in
a meeting at which you do not have access to the MATLAB or Simulink 3D Animation products.

• Remotely view, from a client machine, a virtual world loaded in a current session of the Simulink
3D Animation product. For example, to visualize a virtual world active in a Simulink 3D Animation
session that is running on a computer in another room, or across the network. This functionality
allows you to view a simulation remotely, but not control it.

• View and navigate, but not simulate, a virtual world. You can navigate, render, and otherwise
visualize a virtual world without simulating it.

• View virtual worlds using stereoscopic vision.

Orbisnap is multiplatform. You can run Orbisnap on any of the platforms that the Simulink 3D
Animation product supports. You do not need a MathWorks license to run Orbisnap.

See Also

Related Examples
• “Set the Default Viewer” on page 2-2
• “Install Orbisnap” on page 8-3
• “Start Orbisnap” on page 8-5
• “Navigate Using Orbisnap” on page 8-9
• “View Animations or Virtual Worlds with Orbisnap” on page 8-12
• “View Virtual Worlds Remotely with Orbisnap” on page 8-13

More About
• “Orbisnap Interface” on page 8-6
• “Virtual World Viewers” on page 7-2

8 Simulink 3D Animation Stand-Alone Viewer

8-2

Install Orbisnap

In this section...
“Section Overview” on page 8-3
“System Requirements” on page 8-3
“Copying Orbisnap to Another Location” on page 8-3
“Adding Shortcuts or Symbolic Links” on page 8-3

Section Overview
The collection of Orbisnap files includes the Orbisnap starter file, Orbisnap executable file, and
supporting files. These files are located under the Simulink 3D Animation orbisnap folder (for
example, matlabroot\toolbox\sl3d\orbisnap\bin for the Windows platform). No further
installation is necessary. You can copy the Orbisnap files to another location or create shortcuts or
symbolic links to the Orbisnap starter file for convenience.

System Requirements
Orbisnap has the same hardware and software requirements as MATLAB. It is a multiplatform
product that can run on PC-compatible computers with Windows or Linux. See the following page on
the MathWorks website:

https://www.mathworks.com/products/availability.html#ML

Copying Orbisnap to Another Location
Orbisnap runs independently of the MATLAB and Simulink 3D Animation products. This
independence means that you can copy Orbisnap to another location or even another machine. The
following is a general procedure on how to copy Orbisnap to another location:

1 From a command line or a graphical interface such as Windows Explorer, create a folder into
which you can copy Orbisnap.

2 Copy all the files in the Orbisnap folder and its subfolders. These files are likely located in the
Simulink 3D Animationorbisnap folder, for example, matlabroot\toolbox\sl3d\orbisnap
for the Windows platform.

3 Paste the files into the folder you created in step 1.

Adding Shortcuts or Symbolic Links
For convenience, you can create a shortcut (Windows) or symbolic link (UNIX) to the Orbisnap starter
file.

• In Windows Explorer, right-click orbisnap.bat and select Properties. You can start Orbisnap
from either the shortcut or the original starter file.

• In UNIX, use the ln -s command to create a symbolic link to orbisnap.

 Install Orbisnap

8-3

https://www.mathworks.com/products/availability.html#ML

See Also

Related Examples
• “Start Orbisnap” on page 8-5
• “Navigate Using Orbisnap” on page 8-9
• “View Animations or Virtual Worlds with Orbisnap” on page 8-12
• “View Virtual Worlds Remotely with Orbisnap” on page 8-13

More About
• “Orbisnap Viewer” on page 8-2
• “Orbisnap Interface” on page 8-6

8 Simulink 3D Animation Stand-Alone Viewer

8-4

Start Orbisnap
You can start Orbisnap from any command line with the following:

orbisnap
orbisnap -f vr_filename
orbisnap -c hostname -w "vrworld" -t http -v vrport -q=end_time
orbisnap -t http -v vrport vr_filename_or_hostname -q=end_time
orbisnap -h

No arguments -- Starts the default Orbisnap. There is no loaded vrworld file and no connection to a
Simulink 3D Animation server.

-f vr_filename — (Optional) Orbisnap starts and loads the vrworld contained in vr_filename.
If you do not provide vr_filename, Orbisnap prompts you for the file name.

-c hostname — (Optional) Orbisnap starts and connects to the Simulink 3D Animation server at
hostname. hostname can be a hostname or IP address. If you do not provide hostname, Orbisnap
prompts you for the hostname.

-w vrworld — (Optional) Orbisnap starts, connects to the Simulink 3D Animation server, and loads
the virtual world associated with the title "vrworld". If "vrworld" is not currently active in the
Simulink 3D Animation server, the connection to the server does not succeed and the default
Orbisnap starts.

-t http — (Optional) Orbisnap starts and connects to the Simulink 3D Animation server at this
HTTP port (default 8123).

-t vrport — (Optional) Orbisnap starts and connects to the Simulink 3D Animation server listening
at this port (default 8124).

vr_filename_or_hostname — (Optional) Orbisnap starts and interprets this string first as a
vrworld file name (for example, vrbounce.wrl). If the string is not a valid vrworld file name,
Orbisnap tries to interpret the string as the name of the host that is running the Simulink 3D
Animation server.

-q=end_time — (Optional) Orbisnap ends when virtual scene time equals end_time.

-h — (Optional) Orbisnap displays the Orbisnap command-line help.

See Also

Related Examples
• “Install Orbisnap” on page 8-3
• “Start Orbisnap” on page 8-5
• “Navigate Using Orbisnap” on page 8-9

More About
• “Orbisnap Viewer” on page 8-2
• “Orbisnap Interface” on page 8-6

 Start Orbisnap

8-5

Orbisnap Interface

In this section...
“Menu Bar” on page 8-7
“Toolbar” on page 8-7
“Navigation Panel” on page 8-8

Here is Orbisnap with a virtual world displayed.

Orbisnap provides much of the functionality of the Simulink 3D Animation Viewer. Using the menu
bar, toolbar, and navigation panel, you can:

• Customize the Orbisnap window
• Manage virtual world viewpoints
• Manage scene rendering

You cannot

• Open an editor for the virtual world

8 Simulink 3D Animation Stand-Alone Viewer

8-6

• Open another window for the virtual world
• Simulate the world (start/stop the model)
• Record or manage animation files

Menu Bar
The Orbisnap menu bar has the following menus:

• File — General file operation options, including,

• Open — Invokes a browser that you can use to browse to the virtual world you want to
visualize.

• Connect to server -- Allows you to connect to a Simulink 3D Animation server. Enter the IP
address or hostname of the host computer running the Simulink 3D Animation server
(127.0.0.1 by default) and the port number at which the Simulink 3D Animation server is
listening (8124 by default).

• Reload — Reloads the saved virtual world. If you have created any viewpoints in this session,
they are not retained unless you have saved those viewpoints with the Save As option.

• Save As — Allows you to save the virtual world.
• Close — Closes the Orbisnap window.

• View — Enables you to customize Orbisnap, including,

• Toolbar — Toggles the toolbar display.
• Status Bar — Toggles the status bar display at the bottom of Orbisnap. This display includes

the current viewpoint, simulation time, navigation method, and the camera position and
direction.

• Navigation Zones — Toggles the navigation zones on/off (see “Navigate Using Orbisnap” on
page 8-9 for a description of how to use navigation zones).

• Navigation Panel — Controls the display of the navigation panel, including toggling it.
• Triad — Shows red, green, and blue arrows that are parallel to the orientation of global x,

y,and z coordinate axes.
• Zoom In/Out — Zooms in or out of the world view.
• Normal (100%) — Returns the zoom to normal (initial viewpoint setting).
• Fullscreen Mode — Displays the viewer in full-screen mode.

• Viewpoints — Manages the virtual world viewpoints.
• Navigation — Manages scene navigation.
• Rendering — Manages scene rendering.
• Help — Displays the Help browser for Orbisnap.

Toolbar
The Orbisnap toolbar has buttons for some of the more commonly used operations available from the
menu bar. These buttons include:

• Drop-down list that displays all the viewpoints in the virtual world
•

Return to viewpoint button

 Orbisnap Interface

8-7

• Create viewpoint button
•

Straighten up button
• Drop-down list that displays the navigation options Walk, Examine, and Fly
•

Undo move button
•

Zoom in/out buttons ,

Navigation Panel
The Orbisnap navigation panel has navigation controls for some of the more commonly used
navigation operations available from the menu bar.

The navigation panel controls include from left to right:

• Hide panel — Toggles the navigation panel.
• Full-screen mode— Uses the whole screen for Orbisnap.
• Next/previous viewpoint — Left and right arrows toggles through the list of viewpoints.
• Return to default viewpoint — Returns focus to original default viewpoint.
• Slide left/right — Buttons to the left and right of the navigation wheel slide the view left or right.
• Navigation wheel — Moves view in one of eight directions.
• Navigation method — Manages scene navigation (walk, examine, or fly).
• Wireframe toggle — Toggles scene wireframe rendering.
• Headlight toggle — Toggles camera headlight.
• Help — Invokes the Orbisnap online help.

See Also

Related Examples
• “Install Orbisnap” on page 8-3
• “Start Orbisnap” on page 8-5
• “Navigate Using Orbisnap” on page 8-9
• “View Animations or Virtual Worlds with Orbisnap” on page 8-12

More About
• “Orbisnap Viewer” on page 8-2

8 Simulink 3D Animation Stand-Alone Viewer

8-8

Navigate Using Orbisnap
You can navigate around a virtual world using the menu bar, toolbar, navigation panel, mouse, and
keyboard.

Navigation view — You can change the camera position. From the menu bar, select the Navigation
menu Straighten Up option. This option resets the camera so that it points straight ahead.

Navigation methods — Navigation with the mouse depends on the navigation method you select
and the navigation zone you are in when you first click and hold down the mouse button. You can set
the navigation method using one of the following:

• From the menu bar, select the Navigation menu Method option. This option provides three
choices, Walk, Examine, or Fly. See the table Orbisnap Mouse Navigation.

• From the toolbar, select the drop-down menu that displays the navigation options Walk, Examine,
and Fly.

• From the navigation panel, click the W, E, or F buttons.
• From the keyboard, press Shift+W, Shift+E, or Shift+F.

Navigation zones — You can view the navigation zones for a virtual world through the menu bar or
keyboard.

From the menu bar, select the View menu Navigation Zones option. The virtual world changes as
the navigation zones are toggled on and appear in the virtual world. Alternatively, from the keyboard,
press the F7 key.

The following table summarizes the behavior associated with the movement modes and navigation
zones when you use your mouse to navigate through a virtual world. Turn on the navigation zones
and experiment by clicking and dragging your mouse in the different zones of a virtual world.

Orbisnap Mouse Navigation

Movement Mode Zone and Description
Walk Outer -- Click and drag the mouse up, down, left, or right to slide the

camera in any of these directions in a single plane.

Inner -- Click and drag the mouse up and down to move forward and
backward. Drag the mouse left and right to turn left or right.

Examine Outer -- Click and drag the mouse up and down to move forward and
backward. Drag the mouse left and right to slide left or right.

Inner -- Click and drag the mouse to rotate the viewpoint around the
origin of the scene.

Fly Outer -- Click and drag the mouse to tilt the view either left or right.

Inner -- Click and drag the mouse to pan the camera up, down, left, or
right within the scene.

Center -- Click and drag the mouse up and down to move forward and
backward. Move the mouse left or right to turn in either of these
directions.

 Navigate Using Orbisnap

8-9

If your virtual world contains sensors, these sensors take precedence over mouse navigation at the
sensor location. In this case, mouse navigation is still possible through the right or middle mouse
buttons.

Keyboard — You can also use the keyboard to navigate through a virtual world. It can be faster and
easier to issue a keyboard command, especially if you want to move the camera repeatedly in a single
direction. The following table summarizes the keyboard commands and their associated navigation
functions. You do not have to capitalize the letters to perform their intended function.

Orbisnap Keyboard Navigation

Keyboard Command Navigation Function
Backspace Undo move.
F9 Straighten up and make the camera stand on the horizontal plane of

its local coordinates.
+/- Zoom in/out.
F6 Toggle the headlight on/off.
F7 Toggle the navigation zones on/off.
F5 Toggle the wireframe option on/off.
F8 Toggle the antialiasing option on/off.
Esc Go to default viewpoint.
Home Return to current viewpoint.
Page Up, Page Down Move between preset viewpoints.
F10 Toggle camera binding from the viewpoint.
Shift+W Set the navigation method to Walk.
Shift+E Set the navigation method to Examine.
Shift+F Set the navigation method to Fly.
Shift Up/Down Arrow Move the camera forward and backward.
Up/Down Arrow Pan the camera up and down.
Left/Right Arrow, Shift+Left/
Right Arrow

Pan the camera right and left.

Alt+Up/Down Arrow Slide up and down.
Alt+Left/Right Arrow Slide left and right.
Ctrl+Left/Right/Up/
Down Arrow

Pressing Ctrl alone acquires the examine lock at the point of
intersection between the line perpendicular to the screen, coming
through the center of the Orbisnap window, and the closest visible
surface to the camera. Pressing the arrow keys without releasing
Ctrl rotates the viewpoint about the acquired center point.

Shift+Alt+Left/Right Arrow Tilt the camera right and left.

8 Simulink 3D Animation Stand-Alone Viewer

8-10

See Also

Related Examples
• “Install Orbisnap” on page 8-3
• “Start Orbisnap” on page 8-5
• “View Animations or Virtual Worlds with Orbisnap” on page 8-12
• “View Virtual Worlds Remotely with Orbisnap” on page 8-13

More About
• “Orbisnap Viewer” on page 8-2
• “Orbisnap Interface” on page 8-6

 Navigate Using Orbisnap

8-11

View Animations or Virtual Worlds with Orbisnap
This topic assumes that you have a prerecorded WRL animation file or an existing virtual world file.
This procedure uses a file named vr_bounce_anim.wrl.

1 Start Orbisnap. For example, in Windows double-click orbisnap.bat in matlabroot\toolbox
\sl3d\orbisnap\bin.

This file is an Orbisnap starter file that calls the Orbisnap executable. Orbisnap is displayed.
2 In Orbisnap, select File > Open.

A file browser is displayed.
3 Browse to the folder that contains the prerecorded WRL animation file or virtual world you want

to view.
4 Select the virtual world or prerecorded WRL file you want to view.
5 Click Open.

The file is displayed. If the file is an animation file, the simulation begins.
6 To close Orbisnap, select File > Close.

Using the menus, toolbar, and navigation panel, you can perform many of the same operations on the
virtual world that you can with the Simulink 3D Animation Viewer. See “Orbisnap Interface” on page
8-6 for an overview of the Orbisnap interface. See “Start Orbisnap” on page 8-5 for a description of
the Orbisnap command-line options.

See Also

Related Examples
• “Install Orbisnap” on page 8-3
• “Start Orbisnap” on page 8-5
• “View Virtual Worlds Remotely with Orbisnap” on page 8-13

More About
• “Orbisnap Viewer” on page 8-2
• “Orbisnap Interface” on page 8-6

8 Simulink 3D Animation Stand-Alone Viewer

8-12

View Virtual Worlds Remotely with Orbisnap
To view virtual worlds from the Simulink 3D Animation server in Orbisnap, you must have

• The MATLAB software running a Simulink 3D Animation server session
• The version of the Simulink 3D Animation server to which you want to connect must be compatible

with the Orbisnap version you are running. For example, you cannot connect Orbisnap to Simulink
3D Animation software Version 3.1.

• Network access between the client computer (running Orbisnap) and host computer (running
MATLAB and Simulink 3D Animation server)

Note If you expect Orbisnap to access a virtual world on the Simulink 3D Animation server from a
remote computer, make that virtual world available for internet viewing. In the Simulink 3D
Animation Viewer for the virtual world you want to make available, select Simulation > Block
Parameters, select the Allow viewing from the Internet check box, then click OK.

Note the following when using Orbisnap remotely:

• Although you can visualize a virtual world from the Simulink 3D Animation server in Orbisnap, any
navigation or rendering in one viewer is not reflected in the other. For example, any navigation
you do on the virtual world in Orbisnap is not reflected in the virtual world in the Simulink 3D
Animation Viewer.

• You cannot start or stop a simulation of the virtual world in Orbisnap. You can see a simulation on
Orbisnap only if the virtual world is simulated in the Simulink 3D Animation server.

• The simulation can be slow when you connect Orbisnap remotely to the Simulink 3D Animation
server.

1 Start Orbisnap. For example, in Windows, double-click orbisnap.bat in matlabroot\toolbox
\sl3d\orbisnap\bin.

This file is an Orbisnap starter file that calls the Orbisnap executable. Orbisnap is displayed.
2 In Orbisnap, select File > Connect to Server.

The Connect to Server dialog box is displayed.
3 Enter the IP address or hostname of the host computer running the Simulink 3D Animation

server (127.0.0.1 by default). The HTTP port number is 8123 by default and the port number at
which the Simulink 3D Animation server is listening is 8124 by default.

The Choose a world dialog box is displayed. This dialog box lists all the virtual worlds that are
currently active on the Simulink 3D Animation server.

 View Virtual Worlds Remotely with Orbisnap

8-13

If no virtual world has ever been opened in this session of the Simulink 3D Animation server,
Orbisnap displays a message. If you see this message, contact your counterpart running the
Simulink 3D Animation server to better synchronize your activities. A virtual world must be fully
active on the Simulink 3D Animation server for Orbisnap to access it remotely.

4 Select a virtual world.
5 Click OK.

Orbisnap displays the selected virtual world of the remote Simulink 3D Animation server.
6 Navigate and render the virtual world as you want.
7 To close Orbisnap, select File > Close.

Using the menus, toolbar, and navigation panel, you can perform many of the same operations on the
virtual world that you can with the Simulink 3D Animation Viewer. See “Orbisnap Interface” on page
8-6. See “Start Orbisnap” on page 8-5 for a description of the Orbisnap command-line options.

See Also

Related Examples
• “Install Orbisnap” on page 8-3
• “Start Orbisnap” on page 8-5
• “View Animations or Virtual Worlds with Orbisnap” on page 8-12

More About
• “Orbisnap Viewer” on page 8-2
• “Orbisnap Interface” on page 8-6

8 Simulink 3D Animation Stand-Alone Viewer

8-14

Blocks

9

Cross Product
Cross product of two 3-D vectors
Library: Simulink 3D Animation / Utilities

Description
Return the cross product–or vector product–of two 3-by-1 vectors. Each input is a vector of the form
a1 i + a2 j + a3k where i, j, and k are unit vectors parallel to the x, y, and z coordinate axes. The

output vector y = a × b is a 3 element vector orthogonal to the input vectors a and b

Ports
Input

Port 1 (a) — 3-element vector
vector

Input vector a , where the elements represent the magnitude of the vector parallel to the x, y, and z
coordinate axes.
Data Types: double

Port 2 (b) — 3-element vector
vector

Input vector b , where the elements represent the magnitude of the vector parallel to the x, y, and z
coordinate axes.
Data Types: double

Output

Port 1 (y) — Resultant vector
vector

Output vector y = a × b , which is orthogonal to a and b
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

9 Blocks

9-2

See Also
Normalize Vector | Rotation Between 2 Vectors | Rotation Matrix to VR Rotation | Viewpoint Direction
to VRML Orientation

Topics
“Connect Virtual Worlds and Models” on page 3-2

Introduced in R2006a

 Cross Product

9-3

Joystick Input
Process input from asynchronous joystick device
Library: Simulink 3D Animation

Description
The Joystick Input block provides interaction between a Simulink model and the virtual world
associated with a Simulink 3D Animation block.

The Joystick Input block uses axes, buttons, and the point-of-view selector, if present. You can use this
block as you would use any other Simulink source block. Its output ports reflect the status of the
joystick controls for axes and buttons.

The Joystick Input block also supports force-feedback devices.

Ports
Input

Force — Force feedback input
vector

Provide the force-feedback to be applied along supported joystick axes.

The length of the Force vector corresponds to the number of joystick axes that support force-
feedback.

To enable this port, you must first select the Enable force-feedback input parameter.
Data Types: double

Output

Axes — Joystick position along any given axis
vector with each element in the range [-1,1]

The first joystick axes element is x, the second element is y, and so on up to the total number of axes.
What the x axis represents depends on the type and shape of the joystick. The Joystick Input block
uses the mapping between the joystick driver and the joystick.
Data Types: double

Buttons — Status of joystick buttons
vector of 0 and 1

9 Blocks

9-4

Data Types: double

Point of view — Current status of the joystick point-of-view selector
-1 (selector inactive) | scalar

The output signal is the angle of the point-of-view selector, or POV Hat, in degrees from 0 to 360. If
the selector is inactive, the signal is -1.
Data Types: double

Parameters
Joystick ID — The ID assigned to given joystick device
1 (default)

You can find the properties of the joystick that is connected to the system in the Game Controllers
section of the system Control Panel.

Adjust I/O ports according to joystick capabilities — Dynamically adjust ports to
correspond to joystick capabilities
on (default) | off

If you enable this parameter, the Simulink 3D Animation software dynamically adjusts the ports to
correspond to the capabilities of the connected joystick each time that you open the model. If the
connected device does not have force-feedback capability, selecting this check box causes the
removal of the force-feedback input from the block, even if you enable the Enable force-feedback
input parameter.

The block ports do not have the full widths provided by the Windows Game Controllers interface.

Enable force-feedback input — Support joysticks with force-feedback
on (default) | off

If you select this check box, the Simulink 3D Animation software can support force-feedback joystick,
steering wheel, and haptic (one that enables tactile feedback) devices.

Output Ports — Enable output ports for joystick commands
off (default) | on

When the Adjust I/O ports according to joystick capabilities parameter is enabled, the output
ports change to correspond to the actual capabilities of the connected joystick. On Windows
platforms, the output ports have fixed maximum width provided by the system Game Controllers
interface.

See Also
Space Mouse Input | vrjoystick | vrspacemouse

Topics
“Connect Virtual Worlds and Models” on page 3-2

Introduced before R2006a

 Joystick Input

9-5

MATLAB to VR Coordinates
Convert MATLAB coordinates to VR coordinates
Library: Simulink 3D Animation / Utilities

Description
The MATLAB to VR Coordinates block converts a point with coordinates in the MATLAB coordinate
system to the VRML coordinate system.

The following relation holds between the two coordinate systems:
[xm, ym, zm] = [xv, zv, -yv]

where MATLAB coordinates are denoted with the m subscript and Virtual World coordinates are
denoted with the v subscript. For more information on the two coordinate systems, see “Virtual World
Coordinate System” on page 1-12.

Ports
Input

M — Coordinates in MATLAB notation
3-element vector

Coordinates of a point in MATLAB notation, specified as a 3-element row vector.
Data Types: single | double

Output

VR — Coordinates in VRML notation
3-element vector

Coordinates of a point in VRML notation, returned as a 3-element row vector.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
vrcoordm2vr | vrcoordvr2m | VR to MATLAB Coordinates | VR Rotation to Rotation Matrix |
Rotation Matrix to VR Rotation | vrrotmat2vec | vrrotvec2mat

9 Blocks

9-6

Topics
“Virtual World Coordinate System” on page 1-12

Introduced in R2019a

 MATLAB to VR Coordinates

9-7

Normalize Vector
Output unit vector parallel to input vector
Library: Simulink 3D Animation / Utilities

Description
Use the Normalize Vector block to obtain a unit vector parallel to a given vector.

Ports
Input

Input 1 — Input signal
vector

Vector of arbitrary size.
Data Types: single | double

Output

Output 1 — Unit vector
vector

Unit vector parallel to the vector provided by the input signal.
Data Types: single | double

Parameters
Maximum modulus to treat vector as zero — Input signal threshold
0 (default)

The output is set to zeroes if the modulus of the input is equal to or lower than this value.

See Also
Cross Product | Rotation Between 2 Vectors | Rotation Matrix to VR Rotation | Viewpoint Direction to
VRML Orientation

Topics
“Connect Virtual Worlds and Models” on page 3-2

Introduced in R2006a

9 Blocks

9-8

Rotation Between 2 Vectors
Virtual world rotation between two 3-D vectors
Library: Simulink 3D Animation / Utilities

Description
The Rotation Between 2 Vectors takes the input of two 3-by-1 vectors and returns a virtual world
rotation (specified as a 4-element vector defining the axis and angle) that is needed to transform the
first input vector to the second input vector.

Ports
Input

Port 1 — Input signal
3-element vector

The input signal is a 3-element vector whose elements correspond to its magnitudes along the i , j , k
unit vectors, respectively.
Data Types: double

Port 2 — Input signal
3-element vector

The input signal is a 3- element vector whose elements correspond to its magnitudes along the
i , j , k unit vectors, respectively.
Data Types: double

Output

Output 1 — Axis-Angle rotation
4-element vector

The output of the block is an axis-angle representation of the rotation needed to transform the first
input vector to the second input vector.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

 Rotation Between 2 Vectors

9-9

See Also
Cross Product | Normalize Vector | Rotation Matrix to VR Rotation | Viewpoint Direction to VRML
Orientation

Topics
“Connect Virtual Worlds and Models” on page 3-2

Introduced in R2006a

9 Blocks

9-10

Rotation Matrix to VR Rotation
Convert rotation matrix to axis/angle rotation
Library: Simulink 3D Animation / Utilities

Description
The Rotation Matrix to VR Rotation converts Rotation Matrix (defined columnwise as 3-by-3 matrix or
as a 9-element column vector) into the Axis / Angle rotation representation used for defining rotations
in VR.

Ports
Input

input 1 — Rotation matrix
3-by-3 matrix

3D rotation, specified as a 3-by-3 columnwise-defined matrix, also known as a direction cosine matrix.

A representation of a three-dimensional spherical rotation as a 3-by-3 real, orthogonal matrix R: RTR
= RRT = I, where I is the 3-by-3 identity and RT is the transpose of R. This matrix is also known as the
direction cosine matrix (DCM). The DCM is the orientation of the object in space, relative to its
parent node.

R =
R11 R12 R13
R21 R22 R23
R31 R32 R33

=
Rxx Rxy Rxz
Ryx Ryy Ryz
Rzx Rzy Rzz

Data Types: single | double

Output

Port 1 — Axis/Angle Rotation
4 element vector

Output rotation, returned as a 4-element vector in axis/angle notation,. The first three elements
specify the axis of rotation and the fourth element specifies the angle.

Parameters
Maximum value to treat input value as zero — Effective zero value
1e-12 (default) | scalar

Input signal value is considered to be zero if it is equal to or lower than the value set in this
parameter. By default, the parameter is set to ε = 1e-12.

 Rotation Matrix to VR Rotation

9-11

See Also
VR Rotation to Rotation Matrix

Introduced in R2019a

9 Blocks

9-12

Space Mouse Input
Process input from space mouse device
Library: Simulink 3D Animation

Description
A space mouse is a device similar to a joystick in purpose, but it also provides movement control with
six degrees of freedom. This block reads the status of the space mouse and provides some commonly
used transformations of the input. The Space Mouse Input block supports current models of 3–D
navigation devices manufactured by 3Dconnexion (https://www.3dconnexion.com). Contact
MathWorks Technical Support (https://www.mathworks.com/support) for further information
on the support of older 3Dconnexion devices.

To open the Block Parameters dialog box, double-click the block.

Ports
Output

Translation — Status of object translation
1 or true | 0 or false

Status of object translation, returned as 0 or false if not pressed and 1 or true if pressed.
Data Types: Boolean

Rotation — Status of object rotation
1 or true | 0 or false

Status of object rotation, returned as 0 or false if not pressed and 1 or true if pressed.
Data Types: Boolean

Buttons — Status of button
1 or true | 0 or false

Status of button, returned as 0 or false if not pressed and 1 or true if pressed.
Data Types: Boolean

Parameters
Port — Serial port where mouse is connected
COM1 (default) | COM2 | COM3 | COM4 | USB1 | USB2 | USB3 | USB4 | USB

 Space Mouse Input

9-13

https://www.3dconnexion.com
https://www.mathworks.com/support.html

Serial port to which the space mouse is connected. Possible values are USB1...USB4 and COM1...COM4.

Output type — Type of output
Speed (default) | Position | Viewpoint coordinates

This field specifies how the inputs from the device are transformed:

• Speed — No transformations are done. Outputs are translation and rotation speeds.
• Position — Translations and rotations are integrated. Outputs are position and orientation in

the form of roll/pitch/yaw angles.
• Viewpoint coordinates — Translations and rotations are integrated. Outputs are position and

orientation in the form of an axis and an angle. You can use these values as viewpoint coordinates
in a virtual world.

Dominant mode — Option to accept only prevailing movement and rotation
off (default) | on

If this check box is selected, the mouse accepts only the prevailing movement and rotation and
ignores the others. This mode is very useful for beginners using space mouse input.

Disable position movement — Option to fix rotations at initial values
off (default) | on

Fixes the rotations at initial values, allowing you to change positions only.

Disable rotation movement — Option to fix positions at initial values
off (default) | on

Fixes the positions at the initial values, allowing you to change rotations only.

Normalize output angle — Option to determine whether rotation angles should wrap in a
full circle
off (default) | on

Determines whether the integrated rotation angles should wrap on a full circle (360°) or not. This is
not used when you set the Output Type to Speed.

Limit position — Option to limit position of mouse
off (default) | on

Determines whether you can limit the upper and lower positions of the mouse.

Position sensitivity — Mouse sensitivity for translations
0.0001 (default)

Mouse sensitivity for translations. Higher values correspond to higher sensitivity.

Rotation sensitivity — Mouse sensitivity for rotations
0.00001 (default)

Mouse sensitivity for rotations. Higher values correspond to higher sensitivity.

Initial position — Initial condition for translations
[0 0 0] (default)

9 Blocks

9-14

Initial condition for integrated translations. This is not used when you set the Output Type to Speed.

Initial rotation — Initial condition for rotations
[0 0 0] (default)

Initial condition for integrated rotations. This is not used when you set the Output Type to Speed.

Lower position limit — Lower limit of mouse
[-100 -100 -100] (default)

Position coordinates for the lower limit of the mouse.

Upper position limit — Upper limit of mouse
[100 100 100] (default)

Position coordinates for the upper limit of the mouse.

See Also
vrspacemouse | vrjoystick

Topics
“Connect Virtual Worlds and Models” on page 3-2
Manipulator with SpaceMouse

Introduced in R2007b

 Space Mouse Input

9-15

Viewpoint Direction to VR Orientation
Convert viewpoint direction to virtual world orientation
Library: Simulink 3D Animation / Utilities

Description
The Viewpoint Direction to VR Orientation takes a viewpoint direction (a 3 element vector) as input
and outputs the corresponding virtual world viewpoint orientation (a 4-element rotation vector).

To open the Block Parameters dialog box, double-click the block.

Ports
Input

Input 1 — Viewpoint direction
3-element vector

Viewpoint direction, specified as a 3-element vector.
Data Types: single | double

Output

Port 1 — Axis/Angle Rotation
4 element vector

Output rotation, returned as a 4-element vector in axis/angle notation,. The first three elements
specify the axis of rotation and the fourth element specifies the angle.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

See Also
Cross Product | Normalize Vector | Rotation Between 2 Vectors | Rotation Matrix to VR Rotation

Topics
Manipulator with SpaceMouse
“Connect Virtual Worlds and Models” on page 3-2

9 Blocks

9-16

Introduced in R2006a

 Viewpoint Direction to VR Orientation

9-17

VR Placeholder
Send unspecified value to Simulink 3D Animation block
Library: Simulink 3D Animation

Description
The VR Placeholder block sends out a special value that is interpreted as “unspecified” by the VR
Sink block. When this value appears on the VR Sink input, whether as a single value or as an element
of a vector, the appropriate value in the virtual world stays unchanged. Use this block to change only
one value from a larger vector. For example, use this block to change just one coordinate from a 3-D
position.

The value output by the VR Placeholder block should not be modified before being used in other VR
blocks.

To open the Block Parameters dialog box, double-click the block.

Ports
Output

Output 1 — Output signal
real scalar | real vector

Output signal returned as unspecified, that drives the virtual reality visualization.
Data Types: double

Parameters
Output width — Length of vector
1 (default)

Length of the vector containing placeholder signal values.

See Also
VR Signal Expander

Introduced before R2006a

9 Blocks

9-18

VR RigidBodyTree
Visualize Robotics System Toolbox RigidBodyTree objects in Simulink
Library: Simulink 3D Animation

Description
Use the VR RigidBodyTree block to visualize RigidBodyTree objects from Robotics System Toolbox in
the Simulink 3D Animation viewer.

Ports
Input

Input 1 — Joint Positions
scalar | vector

Robot configuration that solves the desired end-effector pose, specified as a vector. A robot
configuration is a vector of joint positions for the rigidBodyTree model. The number of positions is
equal to the number of non-fixed joints in the rigidBodyTree parameter.
Data Types: single | double

Parameters
Associated VRML File — 3D World
3D world file name

Specify the virtual world in which the rigidBodyTree is visualized

Parent node (leave empty for root) — Scene hierarchy location
character vector | string

Specify the location of the rigidBodyTree object in the scene hierarchy. For more information on
scene hierarchy, see “Create a Virtual World” on page 6-9.

Rigid Body Tree — robot pose
rigidBodyTree

Specify the name of the Robotics System Toolbox rigidBodyTree object to be used in the virtual
world. If a robot with an identical name is already present in the virtual world, it is used for
visualization by default.

You can enable the Always use robot definition from the RigidBodyTree object parameter to
overwrite the existing robot, if present, with the robot specified by the rigidBodyTree object.

 VR RigidBodyTree

9-19

Always use robot definition from the RigidBodyTree object — create robot
‘off’ (default) | ’on’

Enable this parameter to always create a robot from the rigidBodyTree object specified by the
Rigid Body Tree parameter.

By default, the virtual world uses an existing robot by the same name, if it exists.

Sample time — Block sample time for simulation
0.1 (default) | scalar | vector

Specify the sample time for the block, or specify -1 to inherit the sample time.

Ensure that a viewer window is open during simulation — Open 3D world viewer
‘off’ (default) | ’on’

Enable this parameter to ensure that the Simulink 3D Animation Viewer is open during simulation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

See Also

Introduced in R2018b

9 Blocks

9-20

VR to MATLAB Coordinates
Convert VR coordinates to MATLAB coordinates
Library: Simulink 3D Animation / Utilities

Description
The VR to MATLAB Coordinates block converts a point with coordinates in the Virtual World
coordinate system (Znear) to the MATLAB coordinate system (Zup).

The following relation holds between the two coordinate systems:
[xm, ym, zm] = [xv, -zv, yv]

where MATLAB coordinates are denoted with the m subscript and Virtual World coordinates are
denoted with the v subscript. For more information on the two coordinate systems, see “Virtual World
Coordinate System” on page 1-12.

Ports
Input

VR — Coordinates in the Virtual World coordinate system
3-element vector

Coordinates of a point in VRML notation, specified as a 3-element row vector.
Data Types: single | double

Output

M — Coordinates in the MATLAB coordinate system
3-element vector

Coordinates of a point in MATLAB notation, returned as a 3-element row vector.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
vrcoordm2vr | vrcoordvr2m | VR Rotation to Rotation Matrix | Rotation Matrix to VR Rotation |
vrrotmat2vec | vrrotvec2mat

 VR to MATLAB Coordinates

9-21

Topics
“Virtual World Coordinate System” on page 1-12

Introduced in R2019a

9 Blocks

9-22

VR Rotation to Rotation Matrix
Convert axis/angle rotation to rotation matrix
Library: Simulink 3D Animation / Utilities

Description
The VR Rotation to Rotation Matrix block converts the axis / angle rotation representation used for
defining rotations in virtual reality to a 3-by-3 rotation matrix

Ports
Input

Input 1 — Axis/Angle rotation
4-element vector

Input rotation, specified as a 4-element vector in axis/angle notation,. The first three elements specify
the axis of rotation and the fourth element specifies the angle.
Data Types: single | double

Output

Output 1 — Rotation matrix
3-by-3 matrix

3D rotation, returned as a 3-by-3 columnwise defined matrix, also known as a direction cosine matrix.

A representation of a three-dimensional spherical rotation as a 3-by-3 real, orthogonal matrix R: RTR
= RRT = I, where I is the 3-by-3 identity and RT is the transpose of R. This matrix is also known as the
direction cosine matrix (DCM). The DCM is the orientation of the object in space, relative to its
parent node.

R =
R11 R12 R13
R21 R22 R23
R31 R32 R33

=
Rxx Rxy Rxz
Ryx Ryy Ryz
Rzx Rzy Rzz

Data Types: single | double

Parameters
Maximum value to treat input value as zero — Effective zero value
1e-12 (default) | scalar

Input signal value is considered to be zero if it is equal to or lower than the value set in this
parameter. By default, the parameter is set to ε = 1e-12.

 VR Rotation to Rotation Matrix

9-23

See Also
Rotation Matrix to VR Rotation

Introduced in R2019a

9 Blocks

9-24

VR Signal Expander
Expand input vectors into fully qualified virtual world field vectors

Library
Simulink 3D Animation

Description
The VR Signal Expander block creates a vector of predefined length, using some values from the
input ports and filling the rest with placeholder signal values.

To open the Block Parameters dialog box, double-click the block.

Data Type Support
A VR Signal Expander block accepts and outputs signals of type double.

Parameters
Output width — How long the output vector should be.

Output signal indices — Vector indicating the position at which the input signals appear at the
output. The remaining positions are filled with VR Placeholder signals.

For example, suppose you want an input vector with two signals and an output vector with four
signals, with the first input signal in position 2 and the second input signal in position 4. In the
Output width box, enter 4 and in the Output signal indices box, enter [2,4]. The first and third
output signals are unspecified.

See Also
• VR Placeholder

Introduced before R2006a

 VR Signal Expander

9-25

VR Sink
Write data from Simulink model to virtual world
Library: Simulink 3D Animation

Description
To output data from the model to control and animate a virtual world, use a VR Sink block. The VR
Sink block writes values from its ports to virtual world fields specified in the Block Parameters dialog
box.

The VR Sink block is equivalent to the VR To Video block, except that the Show video output port
parameter for the VR Sink block is cleared by default.

The VR Sink block cannot be compiled by the Simulink Coder software, but it can be used as a
SimViewing device on the host computer.

Note The current internal viewer window (vrfigure) properties are saved together with the
Simulink model. Next time you open the model, the internal viewer window opens with the same
parameters that were last saved, such as position, size, and navigation mode. When you close the
viewer window, the Simulink software does not alert you if these properties have changed.

The VR Sink block is a Sim Viewing Device. You can include it in models that you compile with
Simulink Coder software. If you use External mode to compile, build, and deploy the model on a
target platform, such as Simulink Real-Time™ or Simulink Desktop Real-Time, some sink blocks and
Sim Viewing Device blocks stay in normal mode during simulation, receive data from the target, and
display that data. For more information, see “Use C/C++ S-Functions as Sim Viewing Devices in
External Mode” (Simulink).

Ports
Input

Input 1 — Input signal
real scalar | real vector

Input signal to drive the virtual reality visualization of nodes selected in the Virtual World Tree.
Data Types: double

Output

Output 1 — Output video stream
3-element vector of video signal dimensions

9 Blocks

9-26

Use the output port to access the RGB video stream of the VR signal input.
Data Types: double

Parameters
Source file — File name specifying virtual world that connects to block
string scalar | character vector

By default, the full path to the associated virtual world 3D file appears in this text box. If you enter
only the file name in this box, the software assumes that the virtual world 3D file resides in the same
folder as the model file. You can specify a VRML file or an X3D file.

• Click New to open an empty default virtual world editor. When you either enter a source file name
or use the Browse button, the New button becomes an Edit button.

• Click Edit to launch the default virtual world editor with the source file open.
• Click View to view the world in the Simulink 3D Animation Viewer or a Web browser.
• Click Reload to reload the world after you change it.

Open Viewer automatically — Display virtual world on model load
off | on

Enable this parameter to display the virtual world after loading the Simulink model.

Allow viewing from the Internet — View virtual world over network
off (default) | on

Enable this parameter to make the virtual world accessible for viewing on a client computer. If you do
not select this check box, then the world is visible only on the host computer. This parameter is
equivalent to the RemoteView property of a vrworld object.

Description — Virtual reality object description
string scalar | character vector

The description is displayed in all virtual reality object listings, in the title bar of the Simulink 3D
Animation Viewer, and in the list of virtual worlds on the Simulink 3D Animation HTML page. This
parameter is equivalent to the Description property of a vrworld object.

Sample time — Block sample time for simulation
0.1 (default) | scalar | vector

Specify the sample time for the block, or specify -1 to inherit the sample time.

Show video output port — Output VR signal to video
off (default) | on

Enable a port to output an RGB video stream for further 2D video processing.

Video output signal dimensions — Specify video output size
[200 320] (default) | 2-element vector

Specify the dimensions ([height width]) of the video output signal in pixels.

 VR Sink

9-27

Virtual World Tree — View structure of virtual world

This box shows the structure of the virtual world 3D file and the virtual world itself.

Nodes that have names are marked with red arrows. You can access them from the Simulink 3D
Animation interface. Nodes without names but whose children are named are also marked with red
arrows. This marking scheme makes it possible for you to find all accessible nodes by traversing the
tree using arrows. Other nodes have a blue dot before their names.

Fields with values that you set have check boxes. Use these check boxes to select the fields whose
values you want the Simulink software to update. For every field that you select, an input port is
created in the block. Input ports are assigned to the selected nodes and fields in the order that
corresponds to the virtual world 3D file.

Fields whose values cannot be written (because their parent nodes do not have names, or because
they are not of virtual world data class eventIn or exposedField) have an X-shaped icon.

Show node types — Display node types in virtual world tree
off (default) | on

Enable this parameter to show node types in the virtual world tree.

Show field types — Display field types in virtual world tree
off (default) | on

Enable this parameter to show field types in the virtual scene tree.

See Also
VR Source | VR To Video

Topics
“Connect Virtual Worlds and Models” on page 3-2
“Detect Object Collisions” on page 5-23
Foucault Pendulum Model with Virtual Reality Scene
“Use C/C++ S-Functions as Sim Viewing Devices in External Mode” (Simulink)

Introduced before R2006a

9 Blocks

9-28

VR Source
Read data from virtual world to Simulink model
Library: Simulink 3D Animation

Description
Use the VR Source block to provide interactivity between a user navigating the virtual world and the
simulation of a Simulink model. The VR Source block registers user interactions with the virtual
world and passes that data to the model to affect the simulation of the model. The VR Source reads
values from virtual world fields specified in the Block Parameters dialog box and inputs their values
to a model.

Examples of some ways that you can use a VR Source block to input data from a virtual world to a
Simulink model include:

• Use sensor data from a virtual world to control a simulation. For details, see “Add Sensors to
Virtual Worlds” on page 5-20 and “Detect Object Collisions” on page 5-23.

• Provide interactivity between user navigation and interaction in a virtual world and the simulation
of the model.

• Have a simulation react to virtual world events, such as time ticks or outputs from scripts.
• Use static information from the virtual world, such as the size of a box, to control a simulation.

For example, you can specify setpoints in the virtual world, so that user can specify the location of a
virtual world object interactively. The simulation then responds to the changed location of the object.
The VR Source block can read into the model events from the virtual world, such as time ticks or
outputs from scripts. The VR Source block can also read into the model static information about the
virtual world (for example, the size of a box defined in the virtual world 3D file). For examples of
models that use the VR Source block, see Virtual Control Panel and the Set the Setpoint
subsystem in the vrcrane_panel example.

Note The current internal viewer window (vrfigure) properties are saved together with the
Simulink model. The next time that you open the model, the internal viewer window opens with the
same parameters that were saved, such as position, size, and navigation mode. When closing the
viewer window, the Simulink software does not alert you if these properties have changed.

To open the Block Parameters dialog box VR Source block:

• When you first add a VR Source block and it is still not associated with a virtual world, double-
click the block.

• Otherwise, in the Simulink 3D Animation Viewer, select SimulationBlock parameters. If the
viewer is not already open, you can open it by double-clicking the VR Source block.

 VR Source

9-29

You cannot use the Simulink Coder software to compile a model that includes a VR Source block.

Ports
Output

Output 1 — Output signal
real scalar | real vector

Output signal that drives the virtual reality visualization of nodes selected in the Virtual World Tree.
Data Types: double

Parameters
Source file — File name specifying virtual world that connects to block
string scalar | character vector

By default, the full path to the associated virtual world 3D file appears in this text box. If you enter
only the file name in this box, the software assumes that the virtual world 3D file resides in the same
folder as the model file. You can specify a VRML file or an X3D file.

• Click New to open an empty default virtual world editor. When you either enter a source file name
or use the Browse button, the New button becomes an Edit button.

• Click Edit to launch the default virtual world editor with the source file open.
• Click View to view the world in the Simulink 3D Animation Viewer or a Web browser.
• Click Reload to reload the world after you change it.

Open Viewer automatically — Display virtual world on model load
off | on

Enable this parameter to display the virtual world after loading the Simulink model.

Allow viewing from the Internet — View virtual world over network
off (default) | on

Enable this parameter to make the virtual world accessible for viewing on a client computer. If you do
not select this check box, then the world is visible only on the host computer. This parameter is
equivalent to the RemoteView property of a vrworld object.

Description — Virtual reality object description
string scalar | character vector

The description is displayed in all virtual reality object listings, in the title bar of the Simulink 3D
Animation Viewer, and in the list of virtual worlds on the Simulink 3D Animation HTML page. This
parameter is equivalent to the Description property of a vrworld object.

Sample time — Block sample time for simulation
0.1 (default) | scalar | vector

Specify the sample time for the block, or specify -1 to inherit the sample time.

Virtual World Tree — View structure of virtual world

9 Blocks

9-30

This box shows the structure of the virtual world 3D file and the virtual world itself.

Nodes that have names are marked with red arrows. You can access them from the Simulink 3D
Animation interface. Nodes without names but whose children are named are also marked with red
arrows. This marking scheme makes it possible for you to find all accessible nodes by traversing the
tree using arrows. Other nodes have a blue dot before their names.

Fields with values that you set have check boxes. Use these check boxes to select the fields whose
values you want the Simulink software to update. For every field that you select, an input port is
created in the block. Input ports are assigned to the selected nodes and fields in the order that
corresponds to the virtual world 3D file.

Fields whose values cannot be written (because their parent nodes do not have names, or because
they are not of virtual world data class eventIn or exposedField) have an X-shaped icon.

Show node types — Display node types in virtual world tree
off (default) | on

Enable this parameter to show node types in the virtual world tree.

Show field types — Display field types in virtual world tree
off (default) | on

Enable this parameter to show field types in the virtual scene tree.

See Also
VR Sink | VR To Video

Topics
“Connect Virtual Worlds and Models” on page 3-2
“Detect Object Collisions” on page 5-23
Foucault Pendulum Model with Virtual Reality Scene
“Use C/C++ S-Functions as Sim Viewing Devices in External Mode” (Simulink)

Introduced in R2011b

 VR Source

9-31

VR Text Output
Allows display of Simulink signal values as text in virtual reality scene

Library
Simulink 3D Animation

Description
The VR Text Output can display Simulink values of signal as text in a virtual reality scene.

Text rendering is a demanding task for virtual world viewers, so there is generally be a decrease in
rendering speed when outputting text. This effect increases with the complexity of the text output.
You can improve the performance if you limit the output from the Simulink model to only the values of
signals that change (e.g., modeling captions) or use more static-text nodes.

To open the Block Parameters dialog box, double-click the block.

Parameters
Associated VRML file — Virtual world 3D file specifying the virtual world to which text is output.

Associated Text node — Text node within the virtual world to which text is output.

Format string — Format used for output text. This block uses sprintf() to format the output
strings. Like sprintf(), it works in a vectorized fashion, where the format string is recycled
through the components of the input vector. This block does not support the %c and %s conversion
formats, as signals in the Simulink product cannot have both characters and strings.

Sample time — Enter the sample time or -1 for inherited sample time.

Ensure that a viewer window is open during simulation — Select this check box to ensure that
the Simulink 3D Animation Viewer is open during simulation.

See Also
• VR Sink
• VR Source
• VR To Video
• VR Tracer

9 Blocks

9-32

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

Introduced in R2006b

 VR Text Output

9-33

VR To Video
Write data from Simulink model to virtual world (video output port enabled)
Library: Simulink 3D Animation

Description
The VR to Video block is equivalent to the VR Sink block, except that its Show video output port is
selected by default.

To open the Block Parameters dialog box, double-click the block.

See the VR Sink block for details.

Ports
Input

Input 1 — Input signal
real scalar | real vector

Input signal to drive the virtual reality visualization of nodes selected in the Virtual World Tree.
Data Types: double

Output

Output 1 — Output video stream
3-element vector of video signal dimensions

Use the output port to access the RGB video stream of the VR signal input.
Data Types: double

Parameters
Source file — File name specifying virtual world that connects to block
string scalar | character vector

By default, the full path to the associated virtual world 3D file appears in this text box. If you enter
only the file name in this box, the software assumes that the virtual world 3D file resides in the same
folder as the model file. You can specify a VRML file or an X3D file.

• Click New to open an empty default virtual world editor. When you either enter a source file name
or use the Browse button, the New button becomes an Edit button.

9 Blocks

9-34

• Click Edit to launch the default virtual world editor with the source file open.
• Click View to view the world in the Simulink 3D Animation Viewer or a Web browser.
• Click Reload to reload the world after you change it.

Open Viewer automatically — Display virtual world on model load
off | on

Enable this parameter to display the virtual world after loading the Simulink model.

Allow viewing from the Internet — View virtual world over network
off (default) | on

Enable this parameter to make the virtual world accessible for viewing on a client computer. If you do
not select this check box, then the world is visible only on the host computer. This parameter is
equivalent to the RemoteView property of a vrworld object.

Description — Virtual reality object description
string scalar | character vector

The description is displayed in all virtual reality object listings, in the title bar of the Simulink 3D
Animation Viewer, and in the list of virtual worlds on the Simulink 3D Animation HTML page. This
parameter is equivalent to the Description property of a vrworld object.

Show video output port — Output VR signal to video
on (default) | off

Enables a port to output an RGB video stream for further 2D video processing.

Video output signal dimensions — Specify video output size
[200 320] (default) | 2-element vector

Specify the dimensions ([height width]) of the video output signal in pixels.

Show node types — Display node types in virtual world tree
off (default) | on

Enable this parameter to show node types in the virtual world tree.

Show field types — Display field types in virtual world tree
off (default) | on

Enable this parameter to show field types in the virtual scene tree.

See Also
VR Sink | VR To Video

Topics
“Virtual World Data Types” on page 5-30
“Use C/C++ S-Functions as Sim Viewing Devices in External Mode” (Simulink)

Introduced in R2007b

 VR To Video

9-35

VR Tracer
Trace trajectory of object in associated virtual scene
Library: Simulink 3D Animation

Description
The VR Tracer block allows you to trace the trajectory of an object in the associated virtual scene.

This block creates marker nodes in regular time steps either as children of the specified parent node
(Parent node parameter) or at the top level of scene hierarchy (root).

You can specify one of three types of markers:

• General shape
• Line segments connecting object positions in every time step
• Axis-aligned triads for orienting the trajectory in the 3-D space

You can also project traced object positions to a plane or to a point.

Object position input must correspond to the placement of the object in the scene hierarchy. If the
traced object resides as a child of a parent object, define the parent object DEF name in the parent
node field. If the traced object resides at the top of the scene hierarchy (its position is defined in
global scene coordinates), leave this field empty.

The first block input vector determines the position of the marker. The second block input (if enabled
by the Marker color selection parameter) represents the marker color. The second or third block
input vector (depending on whether the marker color input vector is enabled) specifies the project
point coordinates.

To open the Block Parameters dialog box, double-click the block.

Ports
Input

Position — Position coordinates of node
3-element vector

Object position input corresponding to the placement of the object in the scene hierarchy. If the
traced object resides as a child of a parent object, define the parent object name in the Parent node
(leave empty for root) parameter.
Data Types: double

Color — Marker color
3-element vector

9 Blocks

9-36

Note This port is enabled when the Marker color selection parameter is set to Block input

Provide the color to be used for the tracer markers as a 3-element vector of R, G, and B values.
Data Types: double

Parameters
Associated VRML file — Virtual world 3D file
string scalar | character vector

Specify the virtual world file used for the 3D viewer.

Parent node (leave empty for root) — — Select node from hierarchy
VR node

Select the node to be traced from the scene hierarchy.

Marker shape — Select marker shape
None (default) | Tetrahedron | Pyramid | Box | Octahedron | Sphere

Select a shape from the provided options to mark the signal trace.

Connect markers with line segments — Display traced path
on (default) | off

Enable this parameter to connect the markers on the traced object's path.

Place a triad at each marker position — Provide orientation information
on (default) | off

Enable this parameter to place a triad at each marker position. A triad helps you orient the object
trajectory in the x-y-z plane.

Marker scale — Specify size of marker
[1 1 1] (default)

Specify a 3-element vector that defines the scaling of predefined marker shapes and triads. This
parameter allows accommodation for scenes of various sizes.

Marker color selection — Specify source of marker colors
Block input (default) | Selected from color list | Defined as RGB values

• Block input — Disables Marker color parameter and relies on the second block input to define
the marker color. Selecting this option enables the second block input, to which you can connect a
signal for the marker color.

• Selected from color list — Enables the Marker color parameter. You can select one color
from a list for the marker.

• Defined as RGB values — Enables Marker color parameter to accept RGB values for the
marker color.

Marker color — Specify tracer color
yellow (default) | magenta | cyan | red | green | blue | white | black

 VR Tracer

9-37

Set the tracer marker color from the provided options. This parameter is enabled when you set
Marker color selection to Selected from color list.

Marker color (RGB) — Specify tracer color
[1 0 0] (default) | 3-element vector

Set the tracer marker color as a 3-element vector of RGB values, each ranging from 0-255.

Sample time — Block sample time for simulation
0.1 (default) | scalar | vector

Specify the sample time for the block, or specify -1 to inherit the sample time.

Ensure that a viewer window is open during simulation — Keep viewer open
off (default) | on

Select this check box to ensure that the Simulink 3D Animation Viewer is open during simulation.

Project positions on a plane — Project path onto plane
off (default) | on

Specify whether to display line segments from an object onto a plane to approximate the trajectory of
the object.

Projection plane equation coefficients (ax+by+cz+d=0) — Specify projection plane
as coefficients of vector
[0 1 0 0] (default)

When the Project positions on a plane parameter is enabled, specify the plane onto which to
project the position of the object. The coefficients are in the form ax+by+cz+d=0. For example, if you
use the default plane equation coefficients to [0 1 0 0] for the vrtkoff_trace model, then after
you simulate the model, the object positions project to the y=0 plane.

9 Blocks

9-38

matlab:vrtkoff_trace

Project positions to a point — Display line segments from marker to projection
None (default) | Defined in the block mask | Defined in the block input

Displays line segments from an object to a point to approximate the trajectory of the object.

• None — (Default) No projection to a point.
• Defined in block mask — If you select this option, enter coordinates in the Projection point

coordinates edit box.
• Defined in the block input — If you select this option, specify the coordinates of the point

in the output of a block that inputs to the VR Tracer block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

See Also
VR Sink | VR Source | VR To Video | VR Text Output

Introduced in R2008b

 VR Tracer

9-39

Functions

10

stl2vrml
Convert STL file to virtual world file

Syntax
stl2vrml(source)
stl2vrml(source,destination)
stl2vrml(source,destination,format)

Description
stl2vrml(source) converts an ASCII or binary STL file that you specify with source to a VRML97-
compliant, UTF-8 encoded text file.

The converted VRML file has the same name as the source STL file, except that the extension is .wrl
instead of .stl. The stl2vrml function places the VRML file in the current folder.

Tip You can also use the vrimport function to import STL files. However, to import Physical
Modeling XML files, use the stl2vrml function.

stl2vrml(source,destination) creates the converted VRML file in the destination folder.

stl2vrml(source,destination,format) creates the converted virtual world file in the specified
format.

Examples

Convert STL File to VRML File

This example uses an STL file in the Simscape Multibody product.

Convert the STL file Bar1_Default_sldprt.STL (in matlab/toolbox/physmod/sm/smdemos/
import/four_bar) to a VRML file and place the resulting file in the current folder.

stl2vrml('Bar1_Default_sldprt.STL')
ls

. .. Bar1_Default_sldprt.wrl
% Other files and folders in the current folder appear.

Convert STL File to X3D File

This example uses an STL file in the Simscape Multibody product.

Convert the STL file Bar1_Default_sldprt.STL (in matlab/toolbox/physmod/sm/smdemos/
import/four_bar) to an XML-encoded virtual world file and place the resulting file in a folder
called virtualworlds.

10 Functions

10-2

stl2vrml('Bar1_Default_sldprt.STL','virtualworlds','x3d')
ls

. .. Bar1_Default_sldprt.x3d
% Other files and folders in the current folder appear, as well.

Input Arguments
source — STL source file path
character vector

STL source file path, specified as a string. The STL file can be either ASCII or binary.

If the source file is a Physical Modeling XML file, stl2vrml converts all STL files referenced in the
XML file. It also creates a main assembly VRML file that contains Inline references to all converted
individual VRML files. Inlines are wrapped by Transform nodes with DEF names corresponding to
the part names defined in their respective STL source files.

destination — Path to folder for converted file
character vector

Path to the destination folder for converted file, specified as a string. If the destination folder does not
exist, the stl2vrml function attempts to create it.

format — File format for converted virtual world file
'wrl' (VRML) (default) | 'x3d' (XML-encoded X3D file) | 'x3dv' (Classic VRML-encoded X3D file)

File format for converted virtual world file, specified as a string.

Tips
• Use the created assembly virtual world files as templates for creating virtual scenes. Edit the

scenes. For example, add lights, viewpoints, or surrounding objects, modify part materials, define
navigation speeds, and so on.

• The stl2vrml function places assembly parts in the global coordinate system. If the source is a
physical modeling XML file, the resulting virtual world assembly file reflects the initial positions of
parts defined in the XML file.

• To use the tree structure of the related SolidWorks source file in the assembly virtual world file,
avoid spaces in assembly and component names. To process the assembly VRML files (but not X3D
files), you can use the vrphysmod function to obtain a Simulink model with VRML visualization.

See Also
vrimport | vrcadcleanup | vrphysmod

Topics
“Import STL and Physical Modeling XML Files” on page 5-38
“Link to Simulink and Simscape Multibody Models” on page 5-60

Introduced in R2010b

 stl2vrml

10-3

vrcadcleanup
Clean up virtual world 3D file exported from CAD tools

Syntax
vrcadcleanup('filename')
vrcadcleanup('filename', 'hint')

Description
vrcadcleanup('filename') copies the specified file to a backup file with the extension bak. It
then modifies the virtual world 3D file exported from Pro/ENGINEER® or SolidWorks. This cleanup
enables the Simulink 3D Animation software to use these files.

vrcadcleanup performs the following modifications to VRML files:

• Removal of everything except inlines, viewpoints, and transforms
• Provision of names for inline transforms

Note You can use vrcadcleanup with VRML files (.wrl), but not with X3D files (.x3d or .x3dv).

vrcadcleanup('filename', 'hint') takes in account the value of 'hint' during conversion.
Possible value of 'hint' includes:

Argument Description
'solidworks' Assumes that the software is exporting the original set of virtual world

3D files from SolidWorks. This option adds or increments the numerical
suffix to the node names to match the part names that exist in the
corresponding physical modeling XML file.

This function expects the input file structure to correspond to the typical output of the specified CAD
tools. The typical input file should contain:

• A structure of viewpoints and inline nodes (possibly contained in one layer of transform nodes)
• One inline node for each part of the exported assembly

The function also performs the following:

• Upon output, discards any additional nodes, including transform nodes, that do not contain inline
nodes.

• Processes hierarchically organized assemblies, where inline files instead of part geometries
contain additional groups of nested node inline nodes. In such subassembly files, copies all inline
references to the main virtual world 3D file. The function wraps these inline references with a
Transform node, using a name that corresponds to the subassembly name.

Note If you call this function for a file that is not a product of a CAD export filter, the output file
might be corrupted.

10 Functions

10-4

Examples
To clean up the VRML file four_link.wrl:

vrcadcleanup('four_link.wrl');

See Also
stl2vrml | vrphysmod | “Import STL and Physical Modeling XML Files” on page 5-38 | “Link to
Simulink and Simscape Multibody Models” on page 5-60

Introduced in R2009a

 vrcadcleanup

10-5

vr.canvas class

Create virtual reality canvas

Description
Create a virtual reality canvas.

Construction
virtualCanvas = vr.canvas(world) creates a virtual reality canvas showing the specified
virtual world.

virtualCanvas = vrfigure(world,parent) creates a virtual reality canvas in the specified
parent figure or panel. A panel arranges user interface components into groups. By visually grouping
related controls, panels can make the user interface easier to understand. A panel can have a title
and various borders.

virtualCanvas = vr.canvas(world,parent,position) creates a virtual reality canvas in a
figure or panel at the specified position.

virtualCanvas = vr.canvas(world,PropertyName,Value,...,PropertyName,Value) sets
the values of the vr.canvas properties specified by one or more PropertyName,Value pair
arguments.

Input Arguments

world — Virtual world
vrworld object

Virtual world, specified as a vrworld object.

Note Open the virtual world before you create a vr.canvas object using that virtual world.

parent — Figure for displaying canvas
figure object | uipanel object

Figure for displaying the canvas, specified as a MATLAB figure or uipanel object

position — Canvas location and size
vector with four elements

Location and size of virtual canvas, specified as the vector, in the form [left bottom width
height]. Specify measurements in pixels.

Note On Windows systems, figure windows cannot be less than 104 pixels wide, regardless of the
value of the position argument.

10 Functions

10-6

Element Description
left Distance from the left edge of the primary display to the inner left

edge of the canvas. This value can be negative on systems that
have more than one monitor.

bottom Distance from the bottom edge of the primary display to the inner
bottom edge of the canvas. This value can be negative on systems
that have more than one monitor.

width Distance between the right and left inner edges of the canvas.
height Distance between the top and bottom inner edges of the canvas.

Example: [230 250 570 510]
Data Types: double

PropertyName-Value Pair Arguments

Specify optional comma-separated pairs of PropertyName,Value arguments. PropertyName is the
argument name and Value is the corresponding value. PropertyName must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
PropertyName1,Value1,...,PropertyNameN,ValueN.
Example: set(myFigure,'Antialiasing','on','CameraPosition',[0 100 100])

Antialiasing — Smooth textures using antialiasing
'off' (default) | 'on'

Smooth textures using antialiasing, specified as 'on' or 'off'. Antialiasing smooths textures by
interpolating values between texture points.

CameraBound — Camera movement with current viewpoint
'on' (default) | 'off'

Camera movement with the current viewpoint, specified as 'on' or 'off'.

CameraDirection — Camera direction in the current viewpoint local coordinates
vector of three doubles

Camera direction in the current viewpoint local coordinates, specified as a vector of three doubles.
The doubles represent the x, y, and z vectors in current viewpoint local coordinates.

CameraPosition — Camera position in the current viewpoint local coordinates
vector of three doubles

Camera position in the current viewpoint local coordinates, specified as a vector of three doubles.
The doubles represent the x, y, and z vectors in the current viewpoint local coordinates.

CameraUpVector — Camera up vector
vector of three doubles

Camera up vector, specified as a vector of three doubles. The doubles represent the x, y, and z vectors
in the current viewpoint local coordinates.

DeleteFcn — Callback invoked when closing vr.canvas object
string

 vr.canvas class

10-7

Callback invoked when closing the vr.canvas object, specified as a string.

ExaminePivotPoint — Pivot point about which camera rotates in examine navigation mode
vector of three doubles

Pivot point about which camera rotates in examine navigation mode, specified as a vector of three
doubles in world coordinates.

Headlight — Headlight from camera
'on' (default) | 'off'

Headlight from camera, specified as 'on' or 'off'. If you specify 'off', the camera does not emit
light and the scene can appear dark.

Lighting — Lighting effect
'on' (default) | 'off'

Lighting effect, specified as 'on' or 'off'. If you specify 'off', the camera does not emit light and
the scene can appear dark.

MaxTextureSize — Maximum pixel size of textures
'auto' (default) | integer in a power of 2

Maximum pixel size of textures, specified as 'auto' or integer in a power of 2. The value of 'auto'
sets the maximum texture pixel size. Otherwise, specify an integer in a power of two that is equal to
or less than the video card limit (typically 1024 or 2048).

The smaller the size, the faster the texture renders. Increasing the size improves image quality but
decreases performance.

Note Specifying a value that is unsuitable causes a warning. The Simulink 3D Animation software
then adjusts the property to the next smaller suitable value.

Data Types: int32

NavMode — Navigation mode
'fly' (default) | 'examine' | 'walk' | 'none'

Navigation mode, specified as 'fly', 'examine', 'walk', or 'none'. See “Mouse Navigation” on
page 7-18.

NavPanel — Navigation panel appearance
'none' (default) | 'halfbar' | 'bar' | 'opaque' | 'translucent'

Navigation panel appearance, specified as 'none', 'halfbar', 'bar', 'opaque', or
'translucent'.

Navspeed — Navigation speed
'normal' (default) | 'slow' | 'veryslow' | 'fast' | 'veryfast'

Navigation speed, specified as 'normal', 'slow', 'veryslow', 'fast', or 'veryfast'.

NavZones — Display navigation zones
'off' (default) | 'on'

10 Functions

10-8

Navigation zones display, specified as 'on' or 'off'.

Position — Canvas location and size
vector with four doubles

Location and size of virtual canvas, specified as the vector in the form [left bottom width
height]. Specify measurements in pixels or normalized, based on the Units property setting.

Element Description
left Distance from the left edge of the primary display to the inner left

edge of the canvas. You can specify a negative value on systems
that have more than one monitor.

bottom Distance from the bottom edge of the primary display to the inner
bottom edge of the canvas. You can specify a negative value on
systems that have more than one monitor.

width Distance between the right and left inner edges of the canvas.
height Distance between the top and bottom inner edges of the canvas.

Example: [230 250 570 510]

Sound — Sound effects
'on' (default) | 'off'

Sound effects, specified as 'on' or 'off'.

Stereo3D — Stereoscopic vision mode
'off' (default) | 'anaglyph' | 'active' | vr.utils.stereo3d object

Stereoscopic vision mode, specified as 'off', 'anaglyph', 'active' or a vr.utils.stereo3d
object.

Specifying a vr.utils.stereo3d object sets the Stereo3D, Stereo3DCameraOffset, and
Stereo3DHIT properties. Specifying a vr.utils.stereo3d object also sets color filters for the left
and right cameras.
Data Types: int32

Stereo3DCameraOffset — Distance of left and right camera for stereoscopic vision
non-negative floating-point double-precision number

Distance of left and right camera from parallax for stereoscopic vision, specified as a non-negative
floating-point double-precision number.

Specifying a vr.utils.stereo3d object for the Stereo3D property also sets the
Stereo3DCameraOffset and Stereo3DHIT properties and sets color filters for the left and right
cameras.

Stereo3DHIT — Horizontal image translation (HIT) of two stereoscopic images
double from 0 to 1

Horizontal image translation (HIT) of two stereoscopic images, specified as a double from 0 through
1, inclusive. The larger the value, the further back the background appears.

 vr.canvas class

10-9

Specifying a vr.utils.stereo3d object for the Stereo3D property also sets the
Stereo3DCameraOffset and Stereo3DHIT properties and sets color filters for the left and right
cameras.

Textures — Texture use
'on' (default) | 'off'

Texture use, specified as 'on' or 'off'.

Tooltips — Tooltips display
'on' (default) | 'off'

Tooltips display, specified as 'on' or 'off'.

Transparency — Transparency effect
'on' (default) | 'off'

Transparency effect, specified as 'on' or 'off'.

Triad — Triad location
'bottomleft' (default) | 'bottomright' | 'center | 'topleft' | 'topright' | 'none'

Triad location, specified 'bottomleft', 'bottomright', 'center, 'topleft', 'topright', or
'none'.

Units — Units for Position property
'pixels' (default) | 'normalized'

Units for Position property, specified as 'pixels' or 'normalized'.

Viewpoint — Active viewpoint of figure
string

Active viewpoint of a figure, specified as a string. If the active viewpoint has no description, use an
empty string.

Wireframe — Wireframe display
'off' (default) | 'on'

Wireframe display, specified as 'on' or 'off'.

ZoomFactor — Camera zoom factor
1 (default) | floating-point number

Camera zoom factor, specified as a floating-point number. A zoom factor of 2 makes the scene look
twice as large. A zoom factor of 0.1 makes it look 10 times smaller, and so forth.

Output Arguments

virtualCanvas — Virtual reality canvas
vr.canvas object

Virtual reality canvas, represented by a vr.canvas object

10 Functions

10-10

Properties
Antialiasing — Smooth textures using antialiasing
'off' (default) | 'on'

Smooth textures using antialiasing, returned as 'on' or 'off'. Antialiasing smooths textures by
interpolating values between texture points.

CameraBound — Camera movement with current viewpoint
'on' (default) | 'off'

Camera movement with the current viewpoint, returned as 'on' or 'off'.

CameraDirection — Camera direction in the current viewpoint local coordinates
vector of three doubles

Camera direction in the current viewpoint local coordinates, specified as a vector of three doubles.
The doubles represent the x, y, and z vectors in current viewpoint local coordinates.

CameraDirectionAbs — Camera direction in world coordinates
vector of three doubles

Camera direction in world coordinates, returned as a vector of three doubles (read-only property).

CameraPosition — Current camera position in the current viewpoint local coordinates
vector of three doubles

Camera position in the current viewpoint local coordinates, returned as a vector of three doubles. The
doubles represent the x, y, and z vectors in the current viewpoint local coordinates.

CameraPositionAbs — Camera position in world coordinates
vector of three doubles

Camera direction in world coordinates, represented by a vector of three doubles (read-only property).

CameraUpVector — Camera up vector
vector of three doubles

Camera up vector, returned as a vector of three doubles. The doubles represent the x, y, and z vectors
in the current viewpoint local coordinates.

CameraUpVectorAbs — Camera up vector in world coordinates
vector of three doubles

Camera up vector in world coordinates, represented by a vector of three doubles (read-only
property).

DeleteFcn — Callback invoked when closing vr.canvas object
string

Callback invoked when closing the vr.canvas object, returned as a string.

ExaminePivotPoint — Pivot point about which camera rotates in examine navigation mode
vector of three doubles

 vr.canvas class

10-11

Pivot point about which camera rotates in examine navigation mode, returned as a vector of three
doubles in world coordinates.

Headlight — Headlight from camera
'on' (default) | 'off'

Headlight from camera, returned as 'on' or 'off'. If set to 'off', the camera does not emit light
and the scene can appear dark.

Lighting — Lighting effect
'on' (default) | 'off'

Lighting effect, returned as 'on' or 'off'. If set to 'off', the camera does not emit light and the
scene can appear dark.

MaxTextureSize — Maximum pixel size of textures
'auto' (default) | integer in a power of 2

Maximum pixel size of a texture used. The smaller the size, the faster the texture can render. A value
of 'auto' means the texture is set to the maximum pixel size.
Data Types: int32

NavMode — Navigation mode
'fly' (default) | 'examine' | 'walk' | 'none'

Navigation mode, returned as 'fly', 'examine', 'walk', or 'none'. See “Mouse Navigation” on
page 7-18.

NavPanel — Navigation panel appearance
'none' (default) | 'halfbar' | 'bar' | 'opaque' | 'translucent'

Navigation panel appearance, returned as 'none', 'halfbar', 'bar', 'opaque', or
'translucent'.

Navspeed — Navigation speed
'normal' (default) | 'slow' | 'veryslow' | 'fast' | 'veryfast'

Navigation speed, returned as 'normal', 'slow', 'veryslow', 'fast', or 'veryfast'.

NavZones — Display navigation zones
'off' (default) | 'on'

Navigation zones display, returned as 'on' or 'off'.

Parent — Handle of parent of virtual reality canvas object
double

Handle of parent of virtual reality canvas object, represented by a double (read-only property).

Position — Canvas location and size
vector with four doubles

Location and size of virtual canvas, returned as the vector in the form [left bottom width
height]. Specify measurements in pixels or normalized, based on the Units property setting.

10 Functions

10-12

Note On Windows systems, figure windows cannot be less than 104 pixels wide, regardless of the
value of the Position property.

Element Description
left Distance from the left edge of the primary display to the inner left

edge of the canvas. You can specify a negative value on systems
that have more than one monitor.

bottom Distance from the bottom edge of the primary display to the inner
bottom edge of the canvas. You can specify a negative value on
systems that have more than one monitor.

width Distance between the right and left inner edges of the canvas.
height Distance between the top and bottom inner edges of the canvas.

Example: [230 250 570 510]

Sound — Sound effects
'on' (default) | 'off'

Sound effects, returned as 'on' or 'off'.

Stereo3D — Stereoscopic vision mode
'off' (default) | 'anaglyph' | 'active' | vr.utils.stereo3d object

Stereoscopic vision mode, returned as 'off', 'anaglyph', 'active' or a vr.utils.stereo3d
object.

Specifying a vr.utils.stereo3d object sets the Stereo3D, Stereo3DCameraOffset, and
Stereo3DHIT properties. Specifying a vr.utils.stereo3d object also sets color filters for the left
and right cameras.

Stereo3DCameraOffset — Distance of left and right camera for stereoscopic vision
non-negative floating-point double-precision number

Distance of left and right camera from parallax for stereoscopic vision, specified as a non-negative
floating-point double-precision number.

Specifying a vr.utils.stereo3d object for the Stereo3D property also sets the
Stereo3DCameraOffset and Stereo3DHIT properties and sets color filters for the left and right
cameras.

Stereo3DHIT — Horizontal image translation (HIT) of two stereoscopic images
double from 0 to 1

Horizontal image translation (HIT) of two stereoscopic images, returned as a double from 0 through
1, inclusive. The larger the value, the further back the background appears. By default, the
background image is at zero and the foreground image appears to pop out from the monitor toward
the person viewing the virtual world.

Specifying a vr.utils.stereo3d object for the Stereo3D property also sets the
Stereo3DCameraOffset and Stereo3DHIT properties and sets color filters for the left and right
cameras.

 vr.canvas class

10-13

Textures — Texture use
'on' (default) | 'off'

Texture use, returned as 'on' or 'off'.

Tooltips — Tooltips display
'on' (default) | 'off'

Tooltips display, returned as 'on' or 'off'.

Transparency — Transparency effect
'on' (default) | 'off'

Transparency effect, returned as 'on' or 'off'.

Triad — Triad location
'bottomleft' (default) | 'bottomright' | 'center | 'topleft' | 'topright' | 'none'

Triad location, returned as 'bottomleft', 'bottomright', 'center, 'topleft', 'topright',
or 'none'.

Units — Units for Position property
'pixels' (default) | 'normalized'

Units for Position property, returned as 'pixels' or 'normalized'.

Viewpoint — Active viewpoint of figure
string

Active viewpoint of a figure, returned as a string.

Wireframe — Wireframe display
'off' (default) | 'on'

Wireframe display, returned as 'on' or 'off'.

World — World containing canvas
vrworld object

World containing canvas, represented by a vrworld object (read-only property).

ZoomFactor — Camera zoom factor
1 (default) | floating-point number

Camera zoom factor, returned as a floating-point number. A zoom factor of 2 makes the scene look
twice as large. A zoom factor of 0.1 makes it look 10 times smaller, and so forth.

Methods

capture Capture virtual reality canvas image

Examples

10 Functions

10-14

Create a Canvas That Displays in a Figure

Create and open a vrworld object.

myWorld = vrworld('vrlights');
open(myWorld);

Create a figure to use as the parent of the canvas. Create a canvas. Use a figure as the parent and
specify the position.

fig = figure;
myCanvas = vr.canvas(myWorld,'Parent',fig,'Units',...
'normalized','Position',[0 0 1 1]);

Create a Virtual World in a Canvas

Create a figure. Create a canvas in the figure and specify a title.

 vr.canvas class

10-15

pf = figure;
pp1 = uipanel('Parent',pf,'Title','Panel with Title');

Create and open a virtual world.

w = vrworld('vrlights');
open(w);

Create a canvas in the virtual world.

c = vr.canvas(w,pp1);

10 Functions

10-16

Set Property Values of Canvas

Set the camera direction, navigation mode, and stereoscopic vision properties of a canvas.

Create and open a vrworld object.

vrmountWorld = vrworld('vrmount.wrl');
open(vrmountWorld);

Create a vr.utils.stereo3d object to use to specify stereoscopic vision properties.

myStereo3D = vr.utils.stereo3d.ANAGLYPH_RED_CYAN;

Create a canvas. Define non-default values for some properties.

myCanvas = vr.canvas(vrmountWorld,'Antialiasing','on',...
 'NavPanel','opaque','NavZones','on','Stereo3D',...
 myStereo3D,'Stereo3DCameraOffset',0.25,...
 'Stereo3DHIT',0.02)

 vr.canvas class

10-17

myCanvas =

 canvas with properties:

 Antialiasing: 'on'
 CameraBound: 'on'
 CameraDirection: [0 0 -1]
 CameraPosition: [0 0 0]
 CameraUpVector: [0 1 0]
 ExaminePivotPoint: [0 0 0]
 Headlight: 'on'
 Lighting: 'on'
 MaxTextureSize: 'auto'
 NavPanel: 'opaque'
 NavMode: 'examine'
 NavSpeed: 'normal'
 NavZones: 'on'
 Position: [0 0 1 1]
 Sound: 'on'
 Stereo3D: 'anaglyph'
 Stereo3DCameraOffset: 0.2500
 Stereo3DHIT: 0.0200
 Textures: 'on'
 Tooltips: 'on'
 Transparency: 'on'
 Triad: 'none'
 Units: 'normalized'
 Viewpoint: 'View 1 - Observer'
 Wireframe: 'off'
 ZoomFactor: 1
 DeleteFcn: []
 CameraDirectionAbs: [0 -0.1987 -0.9801]
 CameraPositionAbs: [20.2500 8 50]
 CameraUpVectorAbs: [0 0.9801 -0.1987]
 Parent: [1x1 Figure]
 World: [1x1 vrworld]

10 Functions

10-18

See Also
vr.utils.stereo3d | vrfigure | vrworld | figure

Topics
“Create vrworld Object for a Virtual World” on page 4-2
“Interact with Virtual Reality Worlds”
“View a Virtual World in Stereoscopic Vision” on page 7-45

Introduced before R2006a

 vr.canvas class

10-19

capture
Class: vr.canvas

Capture virtual reality canvas image

Syntax
image_capture = capture(canvas)

Description
image_capture = capture(canvas) captures a virtual reality canvas into a TrueColor RGB
image. You can display this image using the image command.

Input Arguments
canvas — Virtual reality canvas
vr.canvas object

Virtual reality canvas, specified as a vr.canvas object.

Output Arguments
image_capture — Virtual reality canvas image
array

Virtual reality canvas image, captured as an array. The array is an m-by-n-by-3 data array that defines
red, green, and blue color components for each individual pixel.

Examples

Capture an RGB Image of a Figure in a Canvas

Create and open a vrworld object and associate it with the virtual world vrlights.wrl.

lights_world = vrworld('vrlights');
open(lights_world);

Create a vr.canvas object for lights_world.

f = figure;
c = vr.canvas(lights_world, f, [30 30 300 200]);

10 Functions

10-20

vrdrawnow;

Capture an image of the canvas.

image_capture = capture(c);

Display an RGB image of the canvas in a MATLAB® figure window.

figure;
image(image_capture);

 capture

10-21

See Also
vrworld | image

Topics
“Interact with Virtual Reality Worlds”
“Create vrworld Object for a Virtual World” on page 4-2

Introduced before R2006a

10 Functions

10-22

vrclear
Remove all closed virtual worlds from memory

Syntax
vrclear

vrclear('-force')

Description
The vrclear function removes from memory all virtual worlds that are closed and invalidates all
vrworld objects related to them. This function does not affect open virtual worlds. Open virtual
worlds include those loaded from the Simulink interface. You use this command to

• Ensure that the maximum amount of memory is freed before a memory-consuming operation takes
place.

• Perform a general cleanup of memory.

The vrclear('-force') command removes all virtual worlds from memory, including worlds
opened from the Simulink interface.

See Also
vrworld | vrworld/delete | “Close and Delete a vrworld Object” on page 4-9

Introduced before R2006a

 vrclear

10-23

vrclose
Close virtual reality figure windows

Syntax
vrclose
vrclose all

Description
vrclose and vrclose all close all the open virtual reality figures.

Examples
Open a series of virtual reality figure windows by typing

vrpend
vrbounce
vrlights

Arrange the viewer windows so they are all visible. Type

vrclose

All the virtual reality figure windows disappear from the screen.

See Also
close | “Close and Delete a vrworld Object” on page 4-9

Introduced before R2006a

10 Functions

10-24

vrcoordm2vr
Convert MATLAB coordinates to VR coordinates

Syntax
vr = vrcoordm2vr(m)

Description
vr = vrcoordm2vr(m) converts a point with coordinates in the MATLAB coordinate system to the
Virtual World coordinate system.

Examples

Translate an object along a path

This example is a variation of the “Car in the Mountains” example, with the coordinates for
translation specified in MATLAB coordinate system.

Create a vrworld object representing the virtual world and open it.

world = vrworld('vrmount');
open(world);
view(world);

Identify the nodes in the virtual world using the nodes command

nodes(world)

View1 (Viewpoint) [VR Car in the Mountains]
 Camera_car (Transform) [VR Car in the Mountains]
 VPfollow (Viewpoint) [VR Car in the Mountains]
 Automobile (Transform) [VR Car in the Mountains]
 Wheel (Shape) [VR Car in the Mountains]
 Tree1 (Group) [VR Car in the Mountains]
 Wood (Group) [VR Car in the Mountains]
 Canal (Shape) [VR Car in the Mountains]
 ElevApp (Appearance) [VR Car in the Mountains]
 River (Shape) [VR Car in the Mountains]
 Bridge (Shape) [VR Car in the Mountains]
 Road (Shape) [VR Car in the Mountains]
 Tunnel (Transform) [VR Car in the Mountains]

Access the Automobile vrnode object by assigning it to a handle

car = world.Automobile

car =

 vrnode object: 1-by-1

 Automobile (Transform) [VR Car in the Mountains]

 vrcoordm2vr

10-25

Move the car along the first section of the road.

xz_my = zeros(12,3);

xz_my(:,2) = 1:12;
xz_my(:,1) = 3;
xz_my(:,3) = -0.25;

for idx = 1:length(xz_my)
 car.translation = vrcoordm2vr(xz_my(idx,:));
 vrdrawnow;
 pause(0.1);
end

Rotate the car a little to get to the second part of the road. This is done by setting the rotation
property of the Automobile node.

car.rotation = [0 1 0 -0.7];
vrdrawnow;

Move the car through the second section of the road

z2 = 12:26;
x2 = 3:1.4285:23;
y2 = -0.25 + zeros(size(z2));
xz_my2 = [x2' z2' y2'];

for idx = 1:length(xz_my2)
 car.translation = vrcoordm2vr(xz_my2(idx,:));
 vrdrawnow;
 pause(0.1);
end

Rotate the car once again to face the third stretch of the road and continue to the end.

car.rotation = [0 1 0 0];
x3 = 23:43;
z3 = 26 + zeros(size(x3));
y3 = -0.25 + zeros(size(z3));
xz_my3 = [x3' z3' y3'];
for idx = 1:length(xz_my3)
 car.translation = vrcoordm2vr(xz_my3(idx,:));
 vrdrawnow;
 pause(0.1);
end

Input Arguments
m — Coordinates in MATLAB notation
3-element vector

Coordinates of a point in MATLAB notation, specified as a 3-element row vector.
Data Types: single | double

10 Functions

10-26

Output Arguments
vr — Coordinates in VRML notation
3-element vector

Coordinates of a point in VRML notation, returned as a 3-element row vector.
Data Types: single | double

See Also
vrcoordvr2m | MATLAB to VR Coordinates | VR to MATLAB Coordinates | VR Rotation to Rotation
Matrix | Rotation Matrix to VR Rotation | vrrotmat2vec | vrrotvec2mat

Topics
“Virtual World Coordinate System” on page 1-12

Introduced in R2019a

 vrcoordm2vr

10-27

vrcoordvr2m
Convert VR coordinates to MATLAB coordinates

Syntax
m = vrcoordvr2m(vr)

Description
m = vrcoordvr2m(vr) converts a point with coordinates in the Virtual World coordinate system to
the MATLAB coordinate system.

Examples

Take-off Trajectory

This example creates a simple plane take-off trajectory in the virtual reality coordinate system. and
plots it in MATLAB using plot3

The plane starts in the +x direction and goes up (positive values of y coordinate) in the z=0 plane. We
then convert the trajectory to MATLABcoordinates, so that it can be displayed in a 3D figure using
the MATLAB plot3 command.

Define a simple take-off trajectory

vrpath = [0 0 0; 1 0 0; 2 0.2 0; 3 0.5 0; 4 1 0];

Convert the path from virtual reality coordinates to MATLAB coordinates

mpath = vrcoordvr2m(vrpath);

Display the path in a 3D plot using the plot3 command

plot3 (mpath(:,1), mpath(:,2), mpath(:,3))

Input Arguments
vr — Coordinates in VRML notation
3-element vector

Coordinates of a point in VRML notation, specified as a 3-element row vector.
Data Types: double

Output Arguments
m — Coordinates in MATLAB notation
3-element vector

Coordinates of a point in MATLAB notation, returned as a 3 element row vector.

10 Functions

10-28

See Also
vrcoordm2vr | MATLAB to VR Coordinates | VR to MATLAB Coordinates | VR Rotation to Rotation
Matrix | Rotation Matrix to VR Rotation | vrrotmat2vec | vrrotvec2mat

Topics
“Virtual World Coordinate System” on page 1-12

Introduced in R2019a

 vrcoordvr2m

10-29

vrdir2ori
Convert viewpoint direction to orientation

Syntax
vrdir2ori(d)
vrdir2ori(d,options)

Description
vrdir2ori(d) converts the viewpoint direction, specified by a vector of three elements, to an
appropriate orientation (virtual world rotation vector).

vrdir2ori(d,options) converts the viewpoint direction with the default algorithm parameters
replaced by values defined in options.

The options structure contains the parameter epsilon that represents the value below which a
number will be treated as zero (default value is 1e-12).

See Also
vrori2dir on page 10-103 | vrrotmat2vec on page 10-115 | vrrotvec | vrrotvec2mat on page
10-116

Introduced in R2007b

10 Functions

10-30

vrdrawnow
Update virtual world

Syntax
vrdrawnow

Description
vrdrawnow removes from the queue pending changes to the virtual world and makes these changes
to the scene in the viewer.

Changes to the scene are normally queued and the views are updated when

• The MATLAB software is idle for some time (no Simulink model is running and no script is being
executed).

• A Simulink step is finished.

See Also
vrworld/edit | vrworld/open | “Open a Virtual World with MATLAB” on page 4-3 | “Interact with
a Virtual World with MATLAB” on page 4-5

Introduced before R2006a

 vrdrawnow

10-31

vredit
Open 3D World Editor

Syntax
w = vredit
w = vredit(filename)

Description
w = vredit opens the 3D World Editor with an empty virtual world.

w = vredit(filename) opens a virtual world file in the 3D World Editor, based on the specified
filename. It returns the vrworld handle of the virtual world.

To open a virtual world file in a third-party editor, do not use the vredit command. For example, to
open a virtual world in the Ligos V-Realm Builder editor:

1 Set the default editor to V-Realm Builder. In MATLAB, enter:

vrsetpref('Editor','*VREALM');
2 To open a file in the V-Realm editor, in MATLAB navigate to a virtual world file, right-click, and

select Edit.

Note The vredit command opens the 3D World Editor, regardless of the default editor
preference setting.

Examples

Open New Virtual World in 3D World Editor

vredit

Open Existing Virtual World in 3D World Editor

Open the membrane virtual world in the 3D World Editor.

myworld = vredit('membrane.wrl')

See Also
vrworld/edit | vrworld/open | “Open a Virtual World with MATLAB” on page 4-3 | “Interact with
a Virtual World with MATLAB” on page 4-5

Introduced in R2012b

10 Functions

10-32

vrfigure class

Create virtual reality figure

Description
Creates a virtual reality figure.

To access vrfigure properties, use the vrfigure/get method. To change properties, use the
vrfigure/set method.

If you create a vrfigure object by specifying a virtual world, the virtual figure displays in the viewer
specified in the vrsetpref DefaultViewer property.

Construction
virtual_figure = vrfigure(world) creates a virtual reality figure showing the specified virtual
world.

virtual_figure = vrfigure(world,position) creates a virtual reality figure at the specified
position.

virtual_figure = vrfigure([]) returns an empty vrfigure object that does not have a visual
representation.

virtual_figure = vrfigure returns an empty vector of type vrfigure.

Input Arguments

world — Virtual world
vrworld object

Virtual world, specified as a vrworld object.

Note Open the virtual world that you specify before you create a vrfigure object using that virtual
world.

Position — Figure location and size
vector with four elements

Location and size of virtual figure, specified as the vector in the form [left bottom width
height]. Specify measurements in pixels.

Note On Windows systems, figure windows cannot be less than 104 pixels wide, regardless of the
value of the Position property.

 vrfigure class

10-33

Element Description
left Distance from the left edge of the primary display to the inner left

edge of the figure window. This value can be negative on systems
that have more than one monitor.

bottom Distance from the bottom edge of the primary display to the inner
bottom edge of the figure window. This value can be negative on
systems that have more than one monitor.

width Distance between the right and left inner edges of the figure.
height Distance between the top and bottom inner edges of the figure.

Example: [230 250 570 510]
Data Types: double

Output Arguments

virtual_figure — Virtual reality figure
vrfigure object | empty vector of type vrfigure

If you use a vrworld object as an input argument, virtual_figure is a virtual reality figure,
represented by a vrfigure object.

If you use an empty array as an input argument, the vrfigure constructor returns a vector of type
vrfigure.

If you do not use an input argument, the vrfigure constructor returns an empty vector of type
vrfigure.

Methods

capture Capture virtual reality figure image
capture Capture virtual reality figure image
close Close virtual reality figure
get Return property value of vrfigure object
isvalid Check validity of vrfigure object handles
set Set property values of vrfigure object
set Set property values of vrfigure object

Examples

Create and Display a vrworld Object

Create a vrworld object that is associated with the virtual world vrmount.wrl. Open and view the
virtual world.

myworld = vrworld('vrmount');
open(myworld);
f = vrfigure(myworld);

10 Functions

10-34

See Also
vr.utils.stereo3d | vr.canvas

Topics
“Create vrworld Object for a Virtual World” on page 4-2
“Interact with Virtual Reality Worlds”
“View a Virtual World in Stereoscopic Vision” on page 7-45

Introduced before R2006a

 vrfigure class

10-35

capture
Class: vrfigure

Capture virtual reality figure image

Syntax
image_capture = capture(figure)

Description
image_capture = capture(figure) captures a virtual reality figure into a TrueColor RGB image.
You can display this image using the image command. You can then print the figure.

Input Arguments
figure — Virtual reality figure
vrfigure object

Virtual reality figure, specified as a vrfigure object.

Output Arguments
image_capture — Virtual reality figure image
array

Virtual reality figure image, captured as an array. The array is an m-by-n-by-3 data array that defines
red, green, and blue color components for each individual pixel.

Examples

Capture an RGB Image of a Figure

Create and open a vrworld object and associate it with the virtual world vrmount.wrl.

myworld = vrworld('vrmount');
open(myworld);

View the virtual world in the Simulink® 3D Animation™ Viewer.

f = vrfigure(myworld);

10 Functions

10-36

Create an RGB image of the figure.

image_capture = capture(f);

Display the RGB figure image in a MATLAB® figure window.

image(image_capture);

 capture

10-37

See Also
vrfigure | vrworld | image | isvalid | vrnode/isvalid

Topics
“Interact with Virtual Reality Worlds”
“Create vrworld Object for a Virtual World” on page 4-2

Introduced before R2006a

10 Functions

10-38

close
Class: vrfigure

Close virtual reality figure

Syntax
close(figure)

Description
close(figure) closes the virtual reality figure referenced by figure. If figure is a vector of
vrfigure object handles, then the method closes multiple figures.

Input Arguments
figure — Virtual reality figure
vrfigure object

Virtual reality figure, specified as a vrfigure object.

Examples

Create a Figure

myworld = vrworld('vrpend');
open(myworld);
f = vrfigure(myworld);
close(f)

See Also
vrfigure | vrworld

Topics
“Interact with Virtual Reality Worlds”
“Create vrworld Object for a Virtual World” on page 4-2

Introduced before R2006a

 close

10-39

get
Class: vrfigure

Return property value of vrfigure object

Syntax
get(figure)
figureProp = get(figure,propertyName)

Description
get(figure) lists the values of all the properties of the vrfigure object.

figureProp = get(figure,propertyName) returns the value of the specified property of the
vrfigure object.

Input Arguments
figure — Virtual reality figure
vrfigure object

Virtual reality figure, specified as a vrfigure object.

property_name — Virtual reality figure object property
string

Virtual reality figure property, specified as one of these.

vrfigure Property Meaning
Antialiasing Smooth textures using antialiasing, which

interpolates values between texture points.
CameraBound Camera movement with the current viewpoint.
CameraDirection Camera direction in the current viewpoint local

coordinates.
CameraDirectionAbs Camera direction in the world coordinates. (read-

only property).
CameraPosition Camera position in the current viewpoint local

coordinates.
CameraPositionAbs Camera position in world coordinates (read-only

property).
CameraUpVector Camera up vector.
CameraUpVectorAbs Camera up vector in world coordinates (read-only

property).
CaptureFileFormat File format for a captured frame file.

10 Functions

10-40

vrfigure Property Meaning
CaptureFileName Frame capture file name.
DeleteFcn Callback invoked when closing the vrfigure

object.
ExaminePivotPoint Pivot point about which camera is rotated in

examine navigation mode, in world coordinates.
Fullscreen Full screen display of figure.
Headlight Headlight from camera.
Lighting Lighting effect.
MaxTextureSize Maximum pixel size of a texture used. The

smaller the size, the faster the texture can
render. A value of 'auto' means the texture is
set to the maximum pixel size.

Name Name of figure.
NavMode Navigation mode. See “Mouse Navigation” on

page 7-18.
NavPanel Navigation panel appearance.
NavSpeed Navigation speed.
NavZones Navigation zones display.
Position Screen coordinates of figure.
Record2D 2-D offline animation file recording.
Record2DCompress
Method

Compression method for creating 2-D animation
files. See profile in the MATLAB VideoWriter
documentation.

Record2DCompress
Quality

Quality of 2-D animation file compression. See
the MATLAB VideoWriter documentation.

Record2DFileName Name of 2-D offline animation file. The string can
contain tokens that animation recording replaces
with information. See “File Name Tokens” on
page 4-14.

Record2DFPS Rate of playback for the 2-D offline animation
video in frames per second (fps).

Rendering Specifies whether to render a vrfigure object.
Turning off rendering improves performance. For
example, if your code does batch operations on a
virtual figure, you can turn off rendering during
that processing and then turn it back on after the
processing.

Sound Sound effects.
StatusBar Status bar display.
Stereo3D Stereoscopic vision mode.

 get

10-41

vrfigure Property Meaning
Stereo3DCameraOffset Distance in virtual world units of left and right

camera from parallax for stereoscopic vision.
Parallax is the difference in the apparent position
of an object viewed from two cameras.

Stereo3DHIT Horizontal image translation (HIT) of the two
stereo images in stereoscopic vision, represented
by a value from 0 to 1, inclusive. The larger the
value, the further back the background appears.

Textures Texture use.
ToolBar Toolbar display.
Tooltips Tooltips display in navigation panel.
Transparency Transparency effect.
Triad Location of the triad.
Viewpoint Active viewpoint of figure.
Wireframe Wireframe display.
World Virtual world that the figure displays (read-only

property).
ZoomFactor Camera zoom factor.

Output Arguments
figureProp — Virtual reality figure property
string | vector

Virtual reality figure property, returned as a string or vector.

Examples

Return All Property Values of a Figure

Create a vrfigure object.

myworld = vrworld('vrmount');
open(myworld);
virtual_fig = vrfigure(myworld);

10 Functions

10-42

Return the properties of the virtual figure virtual_fig.

get(virtual_fig)

 Antialiasing = 'on'
 CameraBound = 'on'
 CameraDirection = [0 0 -1]
 CameraDirectionAbs = [0 -0.198669 -0.980067]
 CameraPosition = [0 0 0]
 CameraPositionAbs = [20 8 50]
 CameraUpVector = [0 1 0]
 CameraUpVectorAbs = [0 0.980067 -0.198669]
 CaptureFileFormat = 'tif'
 CaptureFileName = '%f_anim_%n.tif'
 DeleteFcn = ''
 ExaminePivotPoint = [0 0 0]
 Fullscreen = 'off'
 Headlight = 'on'
 Lighting = 'on'
 MaxTextureSize = 'auto'
 Name = 'VR Car in the Mountains'
 NavMode = 'examine'

 get

10-43

 NavPanel = 'halfbar'
 NavSpeed = 'normal'
 NavZones = 'off'
 Position = [5 92 576 350]
 Record2D = 'off'
 Record2DCompressMethod = 'auto'
 Record2DCompressQuality = 75
 Record2DFPS = 'auto'
 Record2DFileName = '%f_anim_%n.avi'
 Rendering = 'on'
 Sound = 'on'
 StatusBar = 'on'
 Stereo3D = 'off'
 Stereo3DCameraOffset = 0.1
 Stereo3DHIT = 0
 Textures = 'on'
 ToolBar = 'on'
 Tooltips = 'on'
 Transparency = 'on'
 Triad = 'none'
 Viewpoint = 'View 1 - Observer'
 Wireframe = 'off'
 World = vrworld object: 1-by-1
 ZoomFactor = 1

Return Name of a Figure

Create a vrfigure object.

myworld = vrworld('vrmount');
open(myworld);
virtual_fig = vrfigure(myworld);

10 Functions

10-44

Return the properties of the virtual figure virtual_fig.

figure_name = get(virtual_fig,'Name')

figure_name =
'VR Car in the Mountains'

See Also
vrfigure | vr.utils.stereo3d

Topics
“Interact with Virtual Reality Worlds”
“Create vrworld Object for a Virtual World” on page 4-2
“View a Virtual World in Stereoscopic Vision” on page 7-45

Introduced before R2006a

 get

10-45

isvalid
Class: vrfigure

Check validity of vrfigure object handles

Syntax
valid_handles = isvalid(vrfigure_vector)

Description
valid_handles = isvalid(vrfigure_vector) detects whether the vrfigure handles are
valid.

Input Arguments
figure_vector — Virtual reality figure vector
array of vrfigure object handles

Virtual reality figure vector, specified as a vrfigure object.

Output Arguments
valid_handles — Valid vrfigure object handles
logical array

Virtual reality figure image, captured as a logical array. The array that contains a 1 where the
vrfigure handles are valid and returns a 0 where they are not.

Examples

Check Validity of Figure Handles

Check whether the figure handles of the vrfigure object are valid. The first check shows that the
figure handle is valid, but the second check shows that the handle is invalid because the figure is
closed.

myworld = vrview('vrpend');

10 Functions

10-46

f = vrfigure(myworld);
firstCheck = isvalid(f)

firstCheck = logical
 1

close(f)
secondCheck = isvalid(f)

secondCheck = logical
 0

See Also
vrfigure | vrworld

Topics
“Interact with Virtual Reality Worlds”
“Create vrworld Object for a Virtual World” on page 4-2

 isvalid

10-47

Introduced before R2006a

10 Functions

10-48

set
Class: vrfigure

Set property values of vrfigure object

Syntax
set(figure,PropertyName,Value,...,PropertyName,Value)

Description
set(figure,PropertyName,Value,...,PropertyName,Value) sets the values of the
vrfigure properties specified by one or more PropertyName,Value pair arguments.

Input Arguments
figure — Virtual reality figure
vrfigure object

Virtual reality figure, specified as a vrfigure object.

PropertyName-Value Pair Arguments

Specify comma-separated pairs of PropertyName,Value arguments. PropertyName is the
argument name and Value is the corresponding value. PropertyName must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
PropertyName1,Value1,...,PropertyNameN,ValueN.
Example: set(myFigure,'Antialiasing','on','CameraPosition',[0 100 100])

Antialiasing — Smooth textures using antialiasing
'off' (default) | 'on'

Smooth textures using antialiasing, specified as 'on' or 'off'. Antialiasing smooths textures by
interpolating values between texture points.

CameraBound — Camera movement with current viewpoint
'on' (default) | 'off'

Camera movement with the current viewpoint, specified as 'on' or 'off'.

CameraDirection — Camera direction in the current viewpoint local coordinates
vector of three doubles

Camera direction in the current viewpoint local coordinates, specified as a vector of three doubles.
The doubles represent the x, y, and z vectors in the current viewpoint local coordinates.

CameraPosition — Camera position in the current viewpoint local coordinates
vector of three doubles

 set

10-49

Camera position in the current viewpoint local coordinates, specified as a vector of three doubles.
The doubles represent the x, y, and z vectors in the current viewpoint local coordinates.

CameraUpVector — Camera up vector
vector of three doubles

Camera up vector, specified as a vector of three doubles. The doubles represent the x, y, and z vectors
in the current viewpoint local coordinates.

CaptureFileFormat — File format for captured frame file
'tif' (default) | 'png'

File format for a captured frame file, specified as 'tif' for Tagged Image Format or 'png' for
Portable Network Graphics format.

CaptureFileName — Frame capture file name
'%f_anim_%n.ext' (default) | string

Frame capture file name, specified as a string. The string can contain tokens that the frame capture
replaces with the corresponding information. See “Define File Name Tokens” on page 4-12.

DeleteFcn — Callback invoked when closing vrfigure object
string

Callback invoked when closing the vrfigure object, specified as a string.

Fullscreen — Fullscreen display of figure
'off' (default) | 'on'

Fullscreen display of figure, specified as 'on' or 'off'.

Headlight — Headlight from camera
'on' (default) | 'off'

Headlight from camera, specified as 'on' or 'off'. If you specify 'off', the camera does not emit
light and the scene can appear dark.

Lighting — Lighting effect
'on' (default) | 'off'

Lighting effect, specified as 'on' or 'off'. If you specify 'off', the camera does not emit light and
the scene can appear dark.

MaxTextureSize — Maximum pixel size of textures
'auto' (default) | integer in a power of 2

Maximum pixel size of textures, specified as 'auto' or integer in a power of 2. The value of 'auto'
sets the maximum texture pixel size. Otherwise, specify an integer in a power of two that is equal to
or less than the video card limit (typically 1024 or 2048).

The smaller the size, the faster the texture renders. Increasing the size improves image quality but
decreases performance.

Note Specifying a value that is unsuitable causes a warning. The Simulink 3D Animation software
then adjusts the property to the next smaller suitable value.

10 Functions

10-50

Data Types: int32

Name — Name of figure
string

Name of figure, specified as a string.

NavMode — Navigation mode
'examine' (default) | 'fly' | 'walk' | 'none'

Navigation mode, specified as 'examine', 'fly', 'walk', or 'none'. See “Mouse Navigation” on
page 7-18.

NavPanel — Navigation panel appearance
'none' (default) | 'halfbar' | 'bar' | 'opaque' | 'translucent'

Navigation panel appearance, specified as 'none', 'halfbar', 'bar', 'opaque', or
'translucent'.

Navspeed — Navigation speed
'normal' (default) | 'slow' | 'veryslow' | 'fast' | 'veryfast'

Navigation speed, specified as 'normal', 'slow', 'veryslow', 'fast', or 'veryfast'.

NavZones — Navigation zones display
'off' (default) | 'on'

Navigation zones display, specified as 'on' or 'off'.

Position — Figure location and size
vector with four doubles

Location and size of virtual figure, specified as the vector in the form [left bottom width
height]. Specify measurements in pixels.

Element Description
left Distance from the left edge of the primary display to the inner left

edge of the figure window. You can specify a negative value on
systems that have more than one monitor.

bottom Distance from the bottom edge of the primary display to the inner
bottom edge of the figure window. You can specify a negative value
on systems that have more than one monitor.

width Distance between the right and left inner edges of the figure.
height Distance between the top and bottom inner edges of the figure.

All measurements are in units specified in pixels.
Example: [230 250 570 510]
Data Types: double

Record2D — 2-D offline animation file recording
'off' (default) | 'on'

2-D offline animation file recording, specified as 'on' or 'off'.

 set

10-51

Record2DCompressMethod — Compression method for creating 2-D animation files
'auto' (default) | '' | 'lossless' | 'none' | string with name of a compression method

Compression method for creating 2-D animation files, specified as '', 'lossless', 'none', or a
string specifying the name of a compression method. See profile in the MATLAB VideoWriter
documentation.

Record2DCompressQuality — Quality of 2-D animation file compression
75 (default) | floating point number from 0 through 100, inclusive

Quality of 2-D animation file compression, specified as a floating-point number from 0 through 100,
inclusive. See the MATLAB VideoWriter documentation.
Data Types: int32

Record2DFileName — Name of 2-D offline animation file
string

Name of 2-D offline animation file, specified as a string. The string can contain tokens that animation
recording replaces with the corresponding information. See “File Name Tokens” on page 4-14.

Record2DFPS — Playback rate for 2-D offline animation file
'auto' (default) | scalar

Playback rate for 2-D offline animation file, specified as 'auto' or as a scalar. The 'auto' setting
aligns simulation time with actual time and uses an appropriate frame rate.
Data Types: int32

Rendering — Render vrfigure object in Simulink 3D Animation Viewer
'on' (default) | 'off'

Render vrfigure object in the Simulink 3D Animation Viewer, by specifying 'on' or 'off'. Turning
off rendering improves performance. For example, if your code does batch operations on a virtual
figure, you can turn off rendering during that processing and then turn it back on after the
processing.

Sound — Sound effects
'on' (default) | 'off'

Sound effects, specified as 'on' or 'off'.

StatusBar — Status bar display
'on' (default) | 'off'

Status bar display, specified as 'on' or 'off'.

Stereo3D — Stereoscopic vision mode
'off' (default) | 'anaglyph' | 'active' | vr.utils.stereo3d object

Stereoscopic vision mode, specified as 'off', 'anaglyph', 'active' or a vr.utils.stereo3d
object.

Specifying a vr.utils.stereo3d object sets the Stereo3D, Stereo3DCamaraOffset, and
Stereo3DHIT properties. Specifying a vr.utils.stereo3d object also sets color filters for the left
and right cameras.

10 Functions

10-52

Stereo3DCameraOffset — Distance of left and right camera for stereoscopic vision
vector of three doubles

Distance of left and right camera from parallax for stereoscopic vision, specified as a vector of three
doubles representing virtual world units or as a vr.utils.stereo3d object.

Specifying a vr.utils.stereo3d object sets the Stereo3D, Stereo3DCamaraOffset, and
Stereo3DHIT properties. Specifying a vr.utils.stereo3d object also sets color filters for the left
and right cameras.

Stereo3DHIT — Horizontal image translation (HIT) of two stereoscopic images
double from 0 to 1

Horizontal image translation (HIT) of two stereoscopic images, specified as a double from 0 through
1, inclusive. The larger the value, the further back the background appears. By default, the
background image is at zero and the foreground image appears to pop out from the monitor toward
the person viewing the virtual world.

Specifying a vr.utils.stereo3d object sets the Stereo3D, Stereo3DCamaraOffset, and
Stereo3DHIT properties. Specifying a vr.utils.stereo3d object also sets color filters for the left
and right cameras.

Textures — Texture use
'on' (default) | 'off'

Texture use, specified as 'on' or 'off'.

Toolbar — Toolbar display
'on' (default) | 'off'

Toolbar display, specified as 'on' or 'off'.

Tooltips — Tooltips display
'on' (default) | 'off'

Tooltips display, specified as 'on' or 'off'.

Transparency — Transparency effect
'on' (default) | 'off'

Transparency effect, specified as 'on' or 'off'.

Viewpoint — Active viewpoint of figure
string

Active viewpoint of a figure, specified as a string. If the active viewpoint has no description, use an
empty string.

Wireframe — Wireframe display
'off' (default) | 'on'

Wireframe display, specified as 'on' or 'off'.

ZoomFactor — Camera zoom factor
1 (default) | floating-point number

 set

10-53

Camera zoom factor, specified as a floating-point number. A zoom factor of 2 makes the scene look
twice as large. A zoom factor of 0.1 makes it look 10 times smaller, and so forth.

Examples

Set Property Values of Figure

Set the camera direction, navigation mode, and stereoscopic vision properties of a virtual figure.

Create a vrfigure object.

myworld = vrworld('vrmount.wrl');
open(myworld);
virtual_fig = vrfigure(myworld);

Create a vr.utils.stereo3d object to use to specify stereoscopic vision properties.

myStereo3D = vr.utils.stereo3d.ANAGLYPH_RED_CYAN;

10 Functions

10-54

Set the properties for a figure.

set(virtual_fig,'CameraDirection',[0 1 0],'NavMode','fly',...
 'Stereo3D',myStereo3D);

View the figure properties.

get(virtual_fig)

 Antialiasing = 'on'
 CameraBound = 'on'
 CameraDirection = [0 1 0]
 CameraDirectionAbs = [0 0.980067 -0.198669]
 CameraPosition = [0 0 0]
 CameraPositionAbs = [20 8 50]
 CameraUpVector = [0 1 0]
 CameraUpVectorAbs = [0 0.980067 -0.198669]
 CaptureFileFormat = 'tif'
 CaptureFileName = '%f_anim_%n.tif'
 DeleteFcn = ''

 set

10-55

 ExaminePivotPoint = [0 0 0]
 Fullscreen = 'off'
 Headlight = 'on'
 Lighting = 'on'
 MaxTextureSize = 'auto'
 Name = 'VR Car in the Mountains'
 NavMode = 'fly'
 NavPanel = 'halfbar'
 NavSpeed = 'normal'
 NavZones = 'off'
 Position = [5 92 576 380]
 Record2D = 'off'
 Record2DCompressMethod = 'auto'
 Record2DCompressQuality = 75
 Record2DFPS = 'auto'
 Record2DFileName = '%f_anim_%n.avi'
 Sound = 'on'
 StatusBar = 'on'
 Stereo3D = 'anaglyph'
 Stereo3DCameraOffset = 0.1
 Stereo3DHIT = 0
 Textures = 'on'
 ToolBar = 'on'
 Tooltips = 'on'
 Transparency = 'on'
 Triad = 'none'
 Viewpoint = 'View 1 - Observer'
 Wireframe = 'off'
 World = vrworld object: 1-by-1
 ZoomFactor = 1

See Also
vrfigure | get | vr.utils.stereo3d

Topics
“Interact with Virtual Reality Worlds”
“Create vrworld Object for a Virtual World” on page 4-2
“View a Virtual World in Stereoscopic Vision” on page 7-45

Introduced before R2006a

10 Functions

10-56

vrgcbf
Current callback vrfigure object

Syntax
f = vrgcbf

Description
f = vrgcbf returns a vrfigure object representing the virtual reality figure that contains the
callback currently being executed.

When no virtual reality figure callbacks are executing, vrgcbf returns an empty array of vrfigure
objects.

See Also
vrfigure | vr.canvas | “Create vrworld Object for a Virtual World” on page 4-2 | “View a Virtual
World in Stereoscopic Vision” on page 7-45

Introduced in R2008b

 vrgcbf

10-57

vrgcf
Handle for active virtual reality figure

Syntax
h = vrgcf

Description
h = vrgcf returns the handle of the current virtual reality figure. The current virtual reality figure
is the currently active virtual reality figure window in which you can get and set the viewer
properties. If no virtual reality figure exists, the MATLAB software returns an empty vrfigure
object.

This method is most useful to query and set virtual reality figure properties.

See Also
vrfigure

Introduced in R2008b

10 Functions

10-58

vrgetpref
Values of Simulink 3D Animation preferences

Syntax
x = vrgetpref

x = vrgetpref('preference_name')

x = vrgetpref('preference_name','factory')

x = vrgetpref('factory')

Arguments
preference_name Name of the preference to read.

Description
x = vrgetpref returns the values of all the Simulink 3D Animation preferences in a structure
array.

x = vrgetpref('preference_name') returns the value of the specified preference. If
preference_name is a cell array of preference names, a cell array of corresponding preference
values is returned.

x = vrgetpref('preference_name','factory') returns the default value for the specified
preference.

x = vrgetpref('factory') returns the default values for all the preferences.

The following preferences are defined. For preferences that begin with the string DefaultFigure or
DefaultWorld, these values are the default values for the corresponding vrfigure or vrworld
property:

Preference Description
AutoCreateThumbnail Creates a thumbnail of a virtual world when you open

a virtual world. The default is 'off'. Setting this
preference to 'on' can be helpful if you download
multiple virtual worlds from the Internet, without
saving them. Creating thumbnails on file open
provides thumbnails the next time someone browses
through the downloaded worlds.

 vrgetpref

10-59

Preference Description
DataTypeBool Specifies the handling of the virtual world Bool data

type for vrnode/setfield and vrnode/getfield.
Valid values are 'logical' and 'char'. If set to
'logical', the virtual world Bool data type is
returned as a logical value. If set to 'char', the Bool
data type is returned 'on' or 'off'. Default is
'logical'.

DataTypeInt32 Specifies handling of the virtual world Int32 data
type for vrnode/setfield and vrnode/getfield.
Valid values are 'int32' and 'double'. If set to
'int32', the virtual world Int32 data type is
returned as int32. If set to 'double', the Int32
data type is returned as 'double'. Default is
'double'.

DataTypeFloat Specifies the handling of the virtual world float data
type for vrnode/setfield and vrnode/getfield.
Valid values are 'single' and 'double'. If set to
'single', the virtual world Float and Color data
types are returned as 'single'. If set to 'double',
the Float and Color data types are returned as
'double'. Default is 'double'.

DefaultCanvasNavPanel Controls the appearance of the control panel in the
vr.canvas object. Values are:

• 'none'

Panel is not visible.
• 'minimized'

Panel appears as a minimized icon in the right-hand
corner of the viewer.

• 'translucent'

Panel floats half transparently above the scene.
• 'opaque'

Panel floats above the scene.

Default: 'none'
DefaultCanvasUnits Specifies default units for new vr.canvas objects.

See vr.canvas for detailed description. Default is
'normalized'.

DefaultEditorMouseBehavior Specifies whether the mouse in the view pane is in
navigation mode or selection mode (for highlighting
corresponding nodes in the tree view pane). The
default is 'navigate'.

DefaultEditorHighlighting Specifies whether to highlight virtual world objects
selected in the view pane. The default is 'on'.

10 Functions

10-60

Preference Description
DefaultFigureAnti
Aliasing

Determines whether antialiasing is used by default for
new vrfigure objects. This preference also applies to
new vr.canvas objects. Valid values are 'off' and
'on'.

DefaultFigureCapture
FileName

Specifies default file name for vr.capture files. See
get for detailed description. Default is '%f_anim_
%n.tif'.

DefaultFigureDeleteFcn Specifies the default callback invoked when closing a
vrfigure object.

DefaultFigureLighting Specifies whether the lights are rendered by default
for new vrfigure objects. This preference also
applies to new vr.canvas objects. Valid values are
'off' and 'on'.

DefaultFigureMax
TextureSize

Specifies the default maximum size of a texture used
in rendering new vrfigure objects. This preference
also applies to new vr.canvas objects. Valid values
are 'auto' and 32 <= x <= video card limit, where
x is a power of 2.

DefaultFigureNavPanel Specifies the default appearance of the control panel
in the viewer. Valid values are 'opaque',
'translucent', 'none', 'halfbar', 'bar', and
'factory'. Default is 'halfbar'.

DefaultFigureNavZones Specifies whether the navigation zone is on or off by
default for new vrfigure objects. This preference
also applies to new vr.canvas objects. Valid values
are 'off' and 'on'.

DefaultFigurePosition Sets the default initial position and size of the
Simulink 3D Animation Viewer window. Valid value is a
vector of four doubles.

DefaultFigureRecord2D
CompressMethod

Specifies the default compression method for creating
2-D animation files for new vrfigure objects. Valid
values are '', 'auto', 'lossless', and
'codec_code'.

DefaultFigureRecord2D
CompressQuality

Specifies the default quality of 2-D animation file
compression for new vrfigure objects. Valid values
are 0-100.

DefaultFigureRecord2D
FileName

Specifies the default 2-D offline animation file name
for new vrfigure objects.

DefaultFigureRecord2DFPS Specifies the default frames per second playback
speed.

To have the 2D AVI animation play back at
approximately the same playback speed as the 3D
virtual world animation, set this preference to auto.

 vrgetpref

10-61

Preference Description
DefaultFigureRendering Specifies whether to render a vrfigure or

vr.canvas object. Turning off rendering improves
performance. For example, if your code does batch
operations on a virtual figure, you can turn off
rendering during that processing and then turn it back
on after the processing.

DefaultFigureStatusBar Specifies whether the status bar appears by default at
the bottom of the Simulink 3D Animation Viewer for
new vrfigure objects. Valid values are 'off' and
'on'.

DefaultFigureTextures Specifies whether textures should be rendered by
default for new vrfigure objects. This preference
also applies to new vr.canvas objects. See get for
detailed description. Default is 'on'.

DefaultFigureToolBar Specifies whether the toolbar appears by default on
the Simulink 3D Animation Viewer for new vrfigure
objects. Valid values are 'off' and 'on'.

DefaultFigure
Transparency

Specifies whether or not transparency information is
taken into account when rendering for new vrfigure
objects. This preference also applies to new
vr.canvas objects. Valid values are 'off' and 'on'.

DefaultFigureWireframe Specifies whether objects are drawn as solids or
wireframes by default for new vrfigure objects. This
preference also applies to new vr.canvas objects.
Valid values are 'off' and 'on'.

DefaultViewer Specifies which viewer is used to view a virtual scene.

• 'internal'

Default Simulink 3D Animation Viewer.
• 'web'

Web browser becomes viewer. This is the current
Web browser virtual world plug-in.

DefaultWorldRecord3D
FileName

Specifies the default 3-D animation file name for new
vrworld objects.

DefaultWorldRecordMode Specifies the default animation recording mode for
new vrworld objects. Valid values are 'manual' and
'scheduled'.

DefaultWorldRecord
Interval

Specifies the default start and stop times for scheduled
animation recording for new vrworld objects. Valid
value is a vector of two doubles.

DefaultWorldRemoteView Specifies whether the virtual world is enabled by
default for remote viewing for new vrworld objects.
Valid values are 'off' and 'on'.

10 Functions

10-62

Preference Description
DefaultWorldTimeSource Specifies the default source of the time for new

vrworld objects. Valid values are 'external' and
'freerun'.

Editor Specifies which virtual world editor to use. Path to the
virtual world editor. If this path is empty, the MATLAB
editor is used.

The path setting is active only if you select the Custom
option.

To open a virtual world file in a third-party editor, do
not use the vredit command. For example, to open a
virtual world in the Ligos V-Realm Builder editor:

1 Set the default editor to V-Realm Builder. In
MATLAB, enter:

vrsetpref('Editor','*VREALM');
2 To open a file in the V-Realm editor, in MATLAB

navigate to a virtual world file, right-click, and
select Edit.

Note The vredit command opens the 3D World
Editor, regardless of the default editor preference
setting.

EditorPreserveLayout Specifies whether the 3D World Editor starts up with a
saved version of the layout of a virtual world when you
exited it or reverts to the default layout. The layout of
the virtual world display pane includes settings for the
view, viewpoints, navigation, and rendering. Valid
values are 'off' and 'on'. The default is on (use
saved layout).

HttpPort For remote access, IP port number used to access the
Simulink 3D Animation server over the Web via HTTP.
If you change this preference, you must restart the
MATLAB software before the change takes effect.

TransportBuffer For remote access, length of the transport buffer
(network packet overlay) for communication between
the Simulink 3D Animation server and its clients.

TransportTimeout Amount of time the Simulink 3D Animation server
waits for a reply from the client. If there is no
response from the client, the Simulink 3D Animation
server disconnects from the client.

VrPort For remote access, IP port used for communication
between the Simulink 3D Animation server and its
clients. If you change this preference, you must restart
the MATLAB software before the change takes effect.

 vrgetpref

10-63

The HttpPort, VrPort, and TransportBuffer preferences affect Web-based remote viewing of
virtual worlds. DefaultFigurePosition and DefaultNavPanel affect the Simulink 3D Animation
Viewer.

DefaultFigureNavPanel — Controls the appearance of the navigation panel in the Simulink 3D
Animation Viewer. For example, setting this value to 'translucent' causes the navigation panel to
appear translucent.

DefaultViewer — Determines whether the virtual scene appears in the default Simulink 3D
Animation Viewer or in your Web browser.

DefaultViewer Setting Description
'internal' Default Simulink 3D Animation Viewer.
'web' Viewer is your Web browser.

Editor — Contains a path to the virtual world editor executable file. When you use the edit
command, Simulink 3D Animation runs the virtual world editor executable with all parameters
required to edit the virtual world file.

When you run the editor, Simulink 3D Animation uses the Editor preference value as if you typed it
into a command line. The following tokens are interpreted:

%matlabroot Refers to the MATLAB root folder
%file Refers to the virtual world file name

For instance, a possible value for the Editor preference is

`%matlabroot\bin\win64\meditor.exe %file'

If this preference is empty, the MATLAB editor is used.

HttpPort -- Specifies the network port to be used for Web access. The port is given in the Web URL
as follows:

http://server.name:port_number

The default value of this preference is 8123.

TransportBuffer — Defines the size of the message window for client-server communication. This
value determines how many messages, at a maximum, can travel between the client and the server at
one time.

Generally, higher values for this preference make the animation run more smoothly, but with longer
reaction times. (More messages in the line create a buffer that compensates for the unbalanced
delays of the network transfer.)

The default value is 5, which is optimal for most purposes. You should change this value only if the
animation is significantly distorted or the reaction times are very slow. On fast connections, where
delays are introduced more by the client rendering speed, this value has very little effect. Viewing on
a host computer is equivalent to an extremely fast connection. On slow connections, the correct value
can improve the rendering speed significantly but, of course, the absolute maximum is determined by
the maximum connection throughput.

VrPort — Specifies the network port to use for communication between the Simulink 3D Animation
server (host computer) and its clients (client computers). Normally, this communication is completely

10 Functions

10-64

invisible to the user. However, if you view a virtual world from a client computer, you might need to
configure the security network system (firewall) so that it allows connections on this port. The default
value of this preference is 8124.

See Also
“Set Simulink 3D Animation Preferences” on page 2-5

Introduced before R2006a

 vrgetpref

10-65

vrifs2patch
Convert virtual world IndexedFaceSet nodes to MATLAB patches

Syntax
vrifs2patch(ifs)

Description
vrifs2patch(ifs) converts the ifs array of existing IndexedFaceSet nodes to MATLAB patch
objects.

Note This function converts only geometry and color data of the source IndexedFaceSet node.

Examples

Convert IndexedFaceSet Nodes to MATLAB Patches

This command converts three IndexedFaceSet nodes to MATLAB® patch objects.

Open virtual world containing an IndexedFaceSet node.

w1 = vrworld('*sl3dlib/objects/Components/Shapes/Torus_High.wrl');
open(w1);

View the virtual world as a virtual figure.

vrfig1 = vrfigure(w1, ...
 'Name', 'Virtual world containing source IndexedFaceSet node', ...
 'CameraBound', 'off', ...
 'CameraPosition',[0 40 0], ...
 'CameraDirection',[0 -1 0], ...
 'CameraUpVector',[0 0 -1]);
vrdrawnow;

10 Functions

10-66

Convert the IndexedFaceSet a MATLAB patch and show it.

figure('Name', 'Resulting patch');
tp = vrifs2patch(w1.torushi.children.geometry);

 vrifs2patch

10-67

Change the patch color, show the axes grid, rotate the camera, and enable mouse rotation.

tp.FaceColor = 'red';

axs = gca;
axs.XGrid = 'on';
axs.YGrid = 'on';
axs.ZGrid = 'on';

camorbit(45, -20);

rotate3d on

10 Functions

10-68

Input Arguments
ifs — IndexedFaceSet nodes to convert
array

IndexedFaceSet nodes, specified as an array.

See Also
vrpatch2ifs | patch

Topics
“Introduction to Patch Objects”

Introduced in R2015a

 vrifs2patch

10-69

vrimport
Import 3D file into virtual world or node

Syntax
node = vrimport(source)
node = vrimport(parent,source)
node = vrimport(___ ,format)
[node,virtualWorld] = vrimport(___)

Description
node = vrimport(source) creates an empty VRML virtual world and imports the source 3D file
into it. The format of the 3D file is detected automatically. You can import these file formats:

• FBX (Autodesk FilmBoX format)
• DAE (Collada digital asset exchange)
• SDF (simulation description format)
• STL (STereoLithography)
• URDF (unified robot description file)

Tip To import Physical Modeling XML files, use the stl2vrml function instead of vrimport.

The function returns a handle to the newly created node.

node = vrimport(parent,source) specifies the existing virtual world or node to import the 3D
source file into.

node = vrimport(___ ,format) explicitly specifies the file format of the 3D source file (for
example, 'urdf'). If the format of the source file does not match the format specified in the format
argument, the function returns an error.

[node,virtualWorld] = vrimport(___) returns the handle of the new node and the handle of
the virtual world that contains that node.

Examples

Import STL File Into an Empty Virtual World

This example imports an STL file rover_1.stl, a model of a simple wheeled robot. The example also
shows how to add visual appearance and material nodes to the imported model in the virtual world.

Create a virtual world with the imported model.

[n,w] = vrimport(which('Rover_1.stl'));

View the virtual world with the imported shape.

10 Functions

10-70

view(w)

Scale the imported model from mm to dm to see it in the view.

n.scale = [0.01 0.01 0.01]

Rotate the rover around the x-axis.

w.Rover_Transform.rotation = [1 0 0 -pi/2]

Explore the virtual world structure.

get(w,'Nodes')

STL imported shapes have no visual properties. Add an Appearance and a Materials node to the
shape. The Appearance node is created in the appearance field of the Shape. The Material node
is create in the material field of the Appearance node.

app = vrnode(w.Rover_Shape,'appearance','Rover_App','Appearance');
mat = vrnode(w.Rover_App,'material','Rover_Mat','Material');

Set the diffuse color to a shade of blue.

w.Rover_Mat.diffuseColor = [0 0.5 1]

 vrimport

10-71

Save the virtual world.

save(w,'Rover_1.wrl')

Import a DAE file

This example imports a .dae format file into a virtual world.

Import the fox.dae file to a node in a virtual world.

[n,w] = vrimport(which('fox.dae'))

n =

 vrnode object: 1-by-1

 COLLADA_fox_Transform_0001 (Transform) []

w =

 vrworld object: 1-by-1

 (No Virtual Reality 3D File Associated)

View the imported visual representation.

view(w)

10 Functions

10-72

Save the virtual world.

save(w,'fox.wrl')

Input Arguments
source — 3D source file
character vector

3D source file path, specified as a character vector. The 3D file can be in DAE, SDF, STL, or URDF
format.

format — File format of source 3D file
'fbx' | 'dae' | 'sdf' | 'stl' | 'urdf'

File format of source 3D file, specified as a character vector. Use this argument to specify explicitly
the required format for the source 3D file.

parent — Virtual world or node to import 3D source file to
vrworld object | vrnode object

Virtual world or node to import 3D source file into, specified as a virtual world handle or node handle.

 vrimport

10-73

• If the parent is a virtual world, the imported node is placed at the ROOT node of the parent.
• If the parent is a node in a virtual world, the imported node is placed in the children field of the

node.

Output Arguments
node — New node
vrnode object

New node, returned as a vrnode object.

virtualWorld — Virtual world containing new node
vrworld object

Virtual world containing new node, returned as a vrworld object.

See Also
stl2vrml | vrcadcleanup | vrphysmod

Topics
“Import STL and Physical Modeling XML Files” on page 5-38
“Import Visual Representations of Robot Models” on page 5-54
“Link to Simulink and Simscape Multibody Models” on page 5-60

Introduced in R2016b

10 Functions

10-74

vrinsertrobot
Add robot to virtual world

Syntax
node = vrinsert(RBT)
node = vrinsertrobot(parent,RBT)
[node, W] = vrinsertrobot(...)
[node, W, tforms] = vrinsertrobot(...)

Description
node = vrinsert(RBT) creates an empty virtual world and inserts the visual representation of the
Robotics System Toolbox rigidBodyTree object RBT into it. It then returns a handle to the newly
created node in the virtual world.

node = vrinsertrobot(parent,RBT) inserts the visual representation of the Robotics System
Toolbox rigidBodyTree object RBT into an existing virtual world or node specified by parent. If
parent is a virtual world, object specified by RBT is placed at its root. If parent is a node within a
virtual world, the inserted object is placed as a direct child of parent.

[node, W] = vrinsertrobot(...) also returns a handle to the virtual world W in addition to the
visualization of the rigidBodyTree object represented by node.

[node, W, tforms] = vrinsertrobot(...) also returns a handle to the appropriate transforms
tforms, which can be used to make additional changes to the robot pose.

Examples

Import Robot to an Empty World

This example shows you how to import and insert a rigidBodyTree object for the KUKA LBR iiwa
robot manipulator into a newly created world.

Import Robot

Create the rigidBodyTree object from the URDF file of the associated robot

RBT = importrobot('iiwa7.urdf');
RBT.DataFormat = 'Row';

For more information on the rigidBodyTree structure, see rigidBodyTree (Robotics System
Toolbox).

Insert and View Robot

Create an empty world and open it.

 vrinsertrobot

10-75

w = vrworld('');
open(w);
view(w);

Create a node in an empty world using vrinsertrobot.

node = vrinsertrobot(w,RBT);

View the created world in the Simulink 3D Animation™ internal viewer.

vrdrawnow

Insert Robot into an Existing World

This example shows how to insert a rigidBodyTree object to an existing world and update the
viewer.

Open a Virtual World

Open up a virtual world in the Simulink 3D Animation™ viewer. This example uses the
robot_scene.wrl world. To create your own virtual world, see “Create a Virtual World” on page 6-9

10 Functions

10-76

robotWorld = vrworld('robot_scene','new');
open(robotWorld);

Add Robot to the Existing World

Import the KUKA LBR iiwa robot from its URDF definition into a rigidBodyTree object.

rbt = importrobot('iiwa7.urdf');
rbt.DataFormat = 'row';

Add the robot to the robotWorld world object created in the previous step.

n = vrinsertrobot(robotWorld,rbt);

Update the scene, even if the viewer is closed. Open the updated world and scene in the internal
viewer.

vrdrawnow
view(robotWorld);

 vrinsertrobot

10-77

Add Robot to World and Change its Pose

This example shows you how to insert a robot into a virtual world and update its pose

Import the Robot and Setup the World

Import the KUKA LFR iiwa robot from its URDF definition and insert it to the virtual world created
from robot_scene.wrl.

RBT = importrobot('iiwa7.urdf');
RBT.DataFormat = 'row';
robotWorld = vrworld('robot_scene');
open(robotWorld);

Get Transforms of Current Pose of the Robot

The tforms output argument contains a list of transforms that describe the robot pose in its initial or
'home' configuration.

[node, W, tforms] = vrinsertrobot(robotWorld, RBT);
vrfigure(robotWorld);

10 Functions

10-78

Change the Pose of the Robot

vrupdaterobot(RBT, tforms, randomConfiguration(RBT));
vrdrawnow;
vrfigure(robotWorld);

Input Arguments
RBT — Robot description
rigidBodyTree object

Robotics System Toolbox rigidBodyTree object. For more information, see rigidBodyTree
(Robotics System Toolbox).

parent — Virtual world node
vrworld object | vrnode object

Node in the virtual world hierarchy under which to insert the robot specified by RBT. If a vrworld
object is provided, the robot is inserted at the ROOT node of the world.

 vrinsertrobot

10-79

Output Arguments
node — Robot object handle
vrnode object

Handle to the newly inserted robot in the virtual world, returned as a vrnode object. For more
information, see vrnode.

W — Virtual world handle
vrworld object

Handle to the virtual world containing the robot, returned as a vrworld object. For more
information, see vrworld.

tforms — List of transforms for the robot
cell array

List of transformations applied to the robot, returned as a cell array of vrnode objects.

See Also
vrworld | vrimport | importrobot (Robotics System Toolbox) | rigidBodyTree (Robotics System
Toolbox)

Introduced in R2018b

10 Functions

10-80

vrinstall
Install and check Simulink 3D Animation components

Syntax
vrinstall('action')

vrinstall action

x = vrinstall('action')

Arguments
action Type of action for this function. Values are -interactive, -selftest, -

check, -install, and -uninstall.

Description
You use this function to install on Windows platforms the Ligos V-Realm Builder. The V-Realm Builder
is an optional virtual world editor. For details, see “Install V-Realm Editor” on page 2-14.

Note The vrinstall command does no perform any action on a Linux platform.

The actions you can perform

Action Value Description
-selftest Checks the integrity of the current installation. If this function reports an

error, you should reinstall the Simulink 3D Animation software. The
function vrinstall automatically does a self-test with any other actions.

-interactive Checks for the installed components, and then displays a list of uninstalled
components you can choose to install.

-check Checks the installation of optional components. If the given component is
installed, returns 1. If the given component is not installed, returns 0. If
you do not specify a component, displays a list of components and their
status.

-install Installs optional components. This action requires you to specify the
component name.

-uninstall Uninstalls optional components. This option is currently available for the
editor only. Note that this action does not remove the files for the editor
from the installation folder. It removes the editor registry information.

Examples
Install the virtual world editor. This command associates V-Realm Builder with the Edit button in the
Block Parameters dialog boxes.

 vrinstall

10-81

vrinstall -install

Introduced before R2006a

10 Functions

10-82

vrjoystick
Create joystick object

Description

Creation
Description

joy = vrjoystick(id) creates a joystick object capable of interfacing with a joystick device. The
id parameter is a one-based joystick ID. The joystick ID is the system ID assigned to the given
joystick device. You can find the properties of the joystick that is connected to the system in the Game
Controllers section of the system Control Panel.

joy = vrjoystick(id,'forcefeedback') enables force feedback if the joystick supports this
capability.

Object Functions
axis Read status of joystick
button Read status of joystick
caps Joystick capabilities
close Close and invalidate joystick
force Apply force feedback to joystick axis
pov Apply force feedback to joystick axis
read Read status of joystick button, axes and pov

See Also
“Set Simulink 3D Animation Preferences” on page 2-5

Introduced in R2007b

 vrjoystick

10-83

axis
Read status of joystick

Syntax
a = axis(joy, n)

Description
a = axis(joy, n) reads the status of joystick with axis number n.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

n — Axis number
real positive scalar | real positive vector

Axis number of joystick, specified as a scalar or a vector.

Output Arguments
a — Status of joystick
real positive scalar in the range [-1, 1]

Status of joystick axis, returned as a real positive scalar in the range [-1,1]. If n is a vector, multiple
buttons are returned.

See Also

Introduced in R2007b

10 Functions

10-84

button
Read status of joystick

Syntax
b = button(joy,n)

Description
b = button(joy,n) reads the status of joystick button number n.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

n — Button number
real positive scalar | real positive vector

Button number of joystick, specified as a scalar or a vector.

Output Arguments
b — Status of button
0 | 1

Status of joystick button, returned as either 0 or 1. If n is a vector, multiple buttons are returned.

See Also
vrjoystick

Introduced in R2007b

 button

10-85

caps
Joystick capabilities

Syntax
c = caps(joy)

Description
c = caps(joy) returns joystick capabilities, such as the number of axes, buttons, POVs, and force-
feedback axes. The return value is a structure with fields named Axes, Buttons, POVs, and Forces.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

Output Arguments
c — Joystick capabilities
structure

Joystick capabilities, returned as a structure.

See Also

Introduced in R2007b

10 Functions

10-86

close
Close and invalidate joystick

Syntax
close(joy)

Description
close(joy) closes and invalidates joystick object.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

See Also
vrjoystick

Introduced in R2007b

 close

10-87

force
Apply force feedback to joystick axis

Syntax
force(joy,n,f)

Description
force(joy,n,f) applies force feedback f to joystick axis n.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

n — Axis number
real positive scalar | real positive vector

Axis number of joystick, specified as a scalar or a vector.

f — Force feedback to be applied
scalar | vector

Force feedback to be applied to joystick axis, specified as a scalar or a vector in the range [-1,1]. f
values should be in range of -1 to 1, and the number of elements in f should either match the number
of elements of n, or f can be a scalar to be applied to all the axes specified by n.

See Also
vrjoystick

Introduced in R2007b

10 Functions

10-88

pov
Apply force feedback to joystick axis

Syntax
p = pov(joy,n)

Description
p = pov(joy,n) reads the status of joystick point of view (POV) of axis number n.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

n — Axis number
real positive scalar | real positive vector

Axis number of joystick, specified as a scalar or a vector.

Output Arguments
p — Point of view
real scalar

Point of view, returned as a real scalar in degrees. When a value of -1 is no axis is selected.

See Also
vrjoystick

Introduced in R2007b

 pov

10-89

read
Read status of joystick button, axes and pov

Syntax
[a,b,p] = read(joy)
[a,b,p] = read(joy,f)

Description
[a,b,p] = read(joy) reads the status of axes, buttons, and point of views (POVs) of the specified
joystick.

[a,b,p] = read(joy,f) additionally applies feedback forces to a force-feedback joystick.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

n — Axis number
real positive scalar | real positive vector

Axis number of joystick, specified as a scalar or a vector.

f — Force feedback to be applied
scalar | vector

Force feedback to be applied to joystick axis, specified as a scalar or a vector in the range [-1,1]. f
values should be in range of -1 to 1, and the number of elements in f should either match the number
of elements of n, or f can be a scalar to be applied to all the axes specified by n.

Output Arguments
a — Status of joystick
real positive scalar in the range [-1, 1]

Status of joystick axis, returned as a real positive scalar in the range [-1,1]. If n is a vector, multiple
buttons are returned.

b — Status of button
0 | 1

Status of joystick button, returned as either 0 or 1. If n is a vector, multiple buttons are returned.

p — Point of view
real scalar

10 Functions

10-90

Point of view, returned as a real scalar in degrees. When a value of -1 is no axis is selected.

See Also
vrjoystick

Introduced in R2007b

 read

10-91

vrlib
Open Simulink block library for Simulink 3D Animation

Syntax
vrlib

Description
The Simulink library for the Simulink 3D Animation product has a number of blocks and utilities. You
can access these blocks in one of the following ways:

• In the MATLAB Command Window, type vrlib.
• From a Simulink block diagram, select the Library Browser from the Simulation tab of the

toolstrip.
• In the MATLAB Command Window, click the Simulink icon.

Introduced before R2006a

10 Functions

10-92

vrnode
Create node or handle to existing node

Syntax
mynode = vrnode

mynode = vrnode([])

mynode = vrnode(vrworld_object,'node_name')

mynode = vrnode(vrworld_object, 'node_name','node_type')

mynode = vrnode(vrworld_object, 'USE', othernode)

mynode = vrnode(parent_node,'parent_field', 'node_name',
'node_type')

mynode = vrnode(parent_node,'parent_field', 'USE',
'othernode')

Arguments
vrworld_object Name of a vrworld object representing a virtual world.
node_name Name of the node.
node_type Type of the node.
parent_node Name of the parent node that is a vrnode object.
parent_field Name of the field of the parent node.
'USE' Enables a USE reference to another node.
othernode Name of another node for a USE reference.

Description
mynode = vrnode creates an empty vrnode handle that does not reference any node.

mynode = vrnode([]) creates an empty array of vrnode handles.

mynode = vrnode(vrworld_object,'node_name') creates a handle to an existing named node
in the virtual world.

mynode = vrnode(vrworld_object, 'node_name','node_type') creates a new node called
node_name of type node_type on the root of the virtual world. It returns the handle to the newly
created node.

mynode = vrnode(vrworld_object, 'USE', othernode) creates a USE reference to the node
othernode on the root of the world vrworld_object. It returns the handle to the virtual world to
the original node.

 vrnode

10-93

mynode = vrnode(parent_node,'parent_field', 'node_name','node_type') creates a
new node called node_name of type node_type that is a child of the parent_node and resides in
the field parent_field. It returns the handle to the newly created node.

mynode = vrnode(parent_node,'parent_field', 'USE', 'othernode') creates a USE
reference to the node othernode as a child of node parentnode and resides in the field
parentfield. It returns the handle to the original node.

A vrnode object identifies a virtual world node in a way very similar to a handle. If you apply the
vrnode method to a node that does not exist, the method creates a node, the vrnode object, and
returns the handle to the vrnode object. If you apply the vrnode method to an existing node, the
method returns the handle to the vrnode object associated with this node.

Method Summary
Method Description
delete Remove vrnode object
fields Virtual world field summary of node object
get Property value of vrnode object
getfield Field value of vrnode object
isvalid 1 if vrnode object is valid, 0 if not
set Change property of virtual world node
setfield Change field value of vrnode object
sync Enable or disable synchronization of virtual world fields with client

See Also
vrnode/delete | vrnode/get | vrnode/getfield | vrnode/set | vrnode/setfield | vrworld

Introduced before R2006a

10 Functions

10-94

vrnode/delete
Remove vrnode object

Syntax
delete(vrnode_object)

delete(n)

Arguments
vrnode_object Name of a vrnode object.

Description
delete(vrnode_object) deletes the virtual world node.

delete(n) deletes the vrnode object referenced by the vrnode handle n. If n is a vector of vrnode
handles, multiple nodes are deleted.

As soon as a node is deleted, it and all its child objects are removed from all clients connected to the
virtual world.

See Also
vrworld/delete

Introduced before R2006a

 vrnode/delete

10-95

vrnode/fields
virtual world field summary of node object

Syntax
fields(vrnode_object)

x = fields(vrnode_object)

Arguments
vrnode_object Name of a vrnode object representing the node to be queried.

Description
fields(vrnode_object) displays a list of fields of the node associated with the vrnode object in
the MATLAB Command Window.

x = fields(vrnode_object) returns the fields of the node associated with the vrnode object in a
structure array. The resulting structure contains a field for every field with the following subfields:

• Type is the name of the field type, for example, 'MFString', 'SFColor'.
• Access is the accessibility description of the data class, for example, 'eventIn',

'exposedField'.
• Sync is the synchronization status 'on' or 'off'. See also vrnode/sync.

See Also
vrnode/get | vrnode/set

Introduced before R2006a

10 Functions

10-96

vrnode/get
Property value of vrnode object

Syntax
get(vrnode_object)

x = get(vrnode_object)

x = get(vrnode_object, 'property_name')

Arguments
vrnode_object Name of a vrnode object representing the node to be queried.
property_name Name of the property to be read.

Description
get(vrnode_object) lists all vrnode properties in the MATLAB Command Window.

x = get(vrnode_object), where vrnode_object is a scalar, returns a structure where each field
name is the name of a property and each field contains the value of that property.

x = get(vrnode_object, 'property_name') returns the value of given property.

If vrnode_object is a vector of vrnode handles, get returns an M-by-1 cell array of values, where
M is equal to length(vrnode_object).

The vrnode property values are case sensitive. Property names are not case sensitive.

The vrnode object properties allow you to control the behavior and appearance of objects. The
vrnode objects have the following properties. All these properties are read only.

Property Value Description
Fields Cell array Valid field names for the node.
Name String Name of the node.
Type String Type of the node. The value is a string (for example,

'Transform', 'Shape').
World Handle Handle of the parent vrworld object. This is a vrworld object

that represents the node's parent world.

See Also
vrnode | vrnode/getfield | vrnode/set | vrnode/setfield

Introduced before R2006a

 vrnode/get

10-97

vrnode/getfield
Field value of vrnode object

Syntax
getfield(vrnode_object)

x = getfield(vrnode_object)

x = getfield(vrnode_object,'fieldname')

Arguments
vrnode_object Name of a vrnode object representing the node to be queried.
fieldname Name of the vrnode object field whose values you want to query.

Description
getfield(vrnode_object) displays all the field names and their current values for the respective
node.

x = getfield(vrnode_object), where vrnode_object is a scalar, returns a structure where
each field name is the name of a vrnode field and each field contains the value of that field.

x = getfield(vrnode_object,'fieldname')returns the value of the specified field for the node
referenced by the vrnode_object handle. If vrnode_object is a vector of vrnode handles,
getfield returns an M-by-1 cell array of values, where M is equal to length(vrnode_object).

If 'fieldname' is a 1-by-N or N-by-1 cell array of strings containing field names, getfield returns
an M-by-N cell array of values.

Tip Using dot notation is the recommended approach for accessing nodes.

Note For Transform nodes, the getfield function does not list the Simulink 3D Animation
extensions rotation_abs and translation_abs. To access those fields, use dot notation. For
example:

gcoords = myWorld.Arm.rotation_abs

See Also
vrnode | vrnode/get | vrnode/set | vrnode/setfield

Introduced before R2006a

10 Functions

10-98

vrnode/isvalid
1 if vrnode object is valid, 0 if not

Syntax
x = isvalid(vrnode_object_vector)

Arguments
vrnode_object_vector Name of an array of vrnode objects to be queried.

Description
This method returns an array that contains 1 when the elements of vrnode_object_vector are
valid vrnode objects, and 0 when they are not.

The vrnode object is considered valid if the following conditions are met:

• The parent world of the node exists.
• The parent world of the node is open.
• The node with the given vrnode handle exists in the parent world.

See Also
isvalid | vrworld/isvalid

Introduced before R2006a

 vrnode/isvalid

10-99

vrnode/set
Change property of virtual world node

Syntax
x = set(vrnode_object, 'property_name','property_value')

Arguments
vrnode_object Name of a vrnode object representing a node in the virtual world.
property_name Name of a property.
property_value Value of a property.

Description
x = set(vrnode_object, 'property_name','property_value') changes the specified
property of the vrnode object to the specified value.

The vrnode property values are case sensitive, while property names are not case sensitive.

The vrnode property values are case sensitive, while property names are not case sensitive.

The vrnode objects have the following properties. All these properties are read only.

Property Value Description
Fields Cell array Valid field names for the node. Read only.
Name String Name of the node. Read only.
Type String Type of the node. The value is a string (for example,

'Transform', 'Shape'). Read only.
World Handle Handle of the parent vrworld object. This is a vrworld object

that represents the node's parent world. Read only.

Currently, nodes have no settable properties.

See Also
vrnode | vrnode/get | vrnode/getfield | vrnode/setfield

Introduced before R2006a

10 Functions

10-100

vrnode/setfield
Change field value of vrnode object

Syntax
x = setfield(vrnode_object,'fieldname','fieldvalue')

Arguments
vrnode_object Name of a vrnode object representing the node to be changed.
fieldname Name of the vrnode object field whose values you want to set.
fieldvalue Value of fieldname.

Description
x = setfield(vrnode_object,'fieldname','fieldvalue')changes the specified field of the
vrnode object to the specified value. You can specify multiple field names and field values in one line
of code by grouping them in pairs. For example, x = setfield(vrnode_object,
'fieldname1', 'fieldvalue1', 'fieldname2', 'fieldvalue2', ...).

Note that field names are case sensitive, while property names are not.

Note The dot notation is the preferred method for accessing nodes. For example:

vrnode_object.fieldname=fieldvalue;

See Also
vrnode | vrnode/get | vrnode/getfield | vrnode/set

Introduced before R2006a

 vrnode/setfield

10-101

vrnode/sync
Enable or disable synchronization of fields with client

Syntax
sync(vrnode_object, 'field_name', 'action')

Arguments
vrnode_object Name of a vrnode object representing the node.
field_name Name of the field to be synchronized.
action The action parameter determines what should be done:

• 'on' enables synchronization of this field.
• 'off' disables synchronization of this field.

Description
The sync method controls whether the value of a field is synchronized.

If you set the field to be synchronized to 'on', the field value is updated every time it is changed on
the client computer. If you set the field to 'off', the host computer ignores the changes on the client
computer.

Synchronized fields add more traffic to the network line because the value of the field must be resent
by the client any time it is changed. Because of this, mark for synchronization only the fields you need
to scan for changes made on clients (typically sensors). By default, fields are not synchronized and
their values reflect only settings from MATLAB or the Simulink software.

Note Synchronization is meaningful only for readable fields. Readable fields are of data class
eventOut and exposedField. You cannot enable synchronization for eventIn or nonexposed
fields.

See Also
vrnode | vrnode/get

Introduced before R2006a

10 Functions

10-102

vrori2dir
Convert viewpoint orientation to direction

Syntax
vrori2dir(r)
vrori2dir(r,options)

Description
vrori2dir(r) converts the viewpoint orientation, specified by a rotation vector, r, to a direction
the viewpoint points to.

vrori2dir(r,options) converts the viewpoint orientation with the default algorithm parameters
replaced by values defined in options.

The options structure contains the parameter epsilon that represents the value below which a
number will be treated as zero (default value is 1e-12).

See Also
vrdir2ori on page 10-30 | vrrotmat2vec on page 10-115 | vrrotvec | vrrotvec2mat on page
10-116

Introduced in R2007b

 vrori2dir

10-103

vrpatch2ifs
Convert MATLAB patches to IndexedFaceSet nodes

Syntax
node = vrpatch2ifs(patches,world)
node = vrpatch2ifs(patches,shape)
node = vrpatch2ifs(patches,parent)
vrpatch2ifs(patches,ifs)

Description
node = vrpatch2ifs(patches,world) converts the patches array and saves the result into the
vrnode array node. Each resulting IndexedFaceSet node in node is wrapped by the created
Shape node residing in a root level of the world virtual world.

node = vrpatch2ifs(patches,shape) converts the patches array and saves the result into the
vrnode array node. Each resulting IndexedFaceSet node in node is a child of the respective Shape
node in the shape array. If the Shape node already contains an IndexedFaceSet node, that
IndexedFaceSet is overwritten. The number of patches must equal the number of Shape nodes.

Note This function converts only geometry and color data of the patch.

node = vrpatch2ifs(patches,parent) converts the patches array and saves the result into
the vrnode array node. Each resulting IndexedFaceSet node in node is wrapped by the created
Shape node that is a child of the parent node.

vrpatch2ifs(patches,ifs) converts the patches array and saves the result into ifs array of
existing IndexedFaceSet nodes, overwriting the IndexedFaceSet nodes. The number of patches
must equal the number of IndexedFaceSet nodes.

Examples

Convert MATLAB Patches to IndexedFaceSet Nodes

This command converts three MATLAB® patches to IndexedFaceSet nodes.

Create surface using MATLAB peaks function.

fig = figure('Name','Source peaks surface');
s = surf(peaks);

10 Functions

10-104

Convert the peaks surface to a patch.

peaksPatch = patch(surf2patch(s));
delete(s);
shading interp;

 vrpatch2ifs

10-105

Create and open an empty virtual world.

w2 = vrworld('');
open(w2);

Create and bind viewpoint

dv = vrnode(w2, 'DefaultViewpoint','Viewpoint');
dv.position = [-1 15 30];
dv.orientation = [-0.38 -0.93 0 0.55];
setfield(dv,'set_bind',true); %#ok<STFLD,SFLD>

Convert the patch to an IndexedFaceSet nodes. The resulting nodes are created in the root level of
supplied vrworld object)

vrpatch2ifs(peaksPatch,w2);

10 Functions

10-106

Show the result.

vrfig2 = vrfigure(w2,'Name',...
 'Virtual world containing resulting IndexedFaceSet node');

 vrpatch2ifs

10-107

Input Arguments
patches — MATLAB patches to convert
array

MATLAB patches, specified as an array.

world — Virtual world that contains Shape nodes
vrworld object

Virtual world that contains Shape nodes, specified as a vrworld object.

parent — Parent grouping node
vrnode object

Parent grouping node, specified as a vrnode object.

shape — Shape array
array of Shape nodes

10 Functions

10-108

Shape array, specified as an array of Shape nodes.

ifs — IndexedFaceSet nodes
array

IndexedFaceSet nodes, specified as an array.

Output Arguments
node — Conversion result
vrnode array

Conversion result, returned as a vrnode array.

See Also
vrifs2patch | patch

Topics
“Introduction to Patch Objects”

Introduced in R2015a

 vrpatch2ifs

10-109

vrphysmod
Add virtual reality visualization framework to block diagrams

Syntax
vrphysmod(virtualWorldFile,system)

Description
vrphysmod(virtualWorldFile,system) updates the Simulink system (model or subsystem) that
the Simscape Multibody smimport function generates.

The model must be on the MATLAB path or already open prior to calling the vrphysmod function.

The .wrl extension is optional for a VRML virtual world file. If the specified system was created with
Simscape Multibody First Generation smimport function, you can specify also an .x3d or .x3dv file
for the virtualWorldFile.

As necessary, vrphysmod adds additional blocks to visualize the mechanical system in virtual reality.
The association between mechanical system bodies and corresponding nodes found in the virtual
world 3D file is based on the name correspondence.

If your model contains several VR Sink blocks that refer to the same virtualWorldFile, this
function attempts to consolidate the animation signals of that virtual scene into one VR Sink block.

You can then save, rename, modify, and run the model. When you save the resulting model, be sure to
preserve the relative path between the Simulink system and the virtual world 3D file.

Note The SolidWorks VRML export filter does not preserve part instance names and the part order
in the resulting virtual world 3D file. Therefore, the association between such parts and the
corresponding bodies in the block diagram is not always an exact match. In such cases, the function
identifies nodes with partial matches and issues warnings. To prevent these warnings, ensure that
node DEF names in the virtual world 3D file are identical to their corresponding bodies in the
Simulink model before running this function.

If you receive this warning and the set of virtual world 3D files does not originate in the SolidWorks
product, ignore the message. Other supported CAD tools also generate part names with similar
names, but preserve them across different export formats.

Examples
To update the model four_link using the file four_link.wrl:

vrphysmod('four_link.wrl', 'four_link');

To update the subsystem four_link/FOURLINK_ASM using the VRML file four_link.wrl, ensure
that the model that contains the subsystem is open, then:

vrphysmod('four_link.wrl', 'four_link/FOURLINK_ASM');

10 Functions

10-110

To update the current system using the file four_link.wrl:

vrphysmod('four_link.wrl', gcs);

See Also
stl2vrml | vrcadcleanup | smimport

Introduced in R2009a

 vrphysmod

10-111

vrplay
Play VRML animation file

Syntax
vrplay
vrplay(filename)
x=vrplay(filename)

Description
vrplay opens the 3D Animation Player, which you use to open and play virtual world animation files.

vrplay(filename) opens the 3D Animation Player and loads the virtual world filename.

x=vrplay(filename) also returns a 3D Animation Player figure handle.

vrplay works only with VRML animation files created using the Simulink 3D Animation virtual world
recording functionality.

When you create additional vrplay windows using the File > New Window command, the window
respects the current setting of the DefaultViewer property. By default, the File > New Window
command creates the new player window implemented as a MATLAB figure.

Simulink 3D Animation Player App
You can open the Simulink 3D Animation Player from the Apps tab in the MATLAB toolstrip as well as
the Simulink toolstrip. In the tab, scroll to the Simulation Graphics and Reporting section and
click 3D Animation Player.

10 Functions

10-112

Keyboard Support
The playback controls can also be accessed from the keyboard.

Key Function
F, Page Down Fast forward
J Jump to time
L Loop
P Play/pause toggle
S Stop
R, Page Up Rewind
Right arrow key Step forward
Left arrow key Step reverse
Up arrow key First
Down arrow key Last

Examples
To play the animation file based on the vr_octavia example, run
vrplay('octavia_scene_anim.wrl').

See Also
vrview

Topics
“Record Offline Animations” on page 7-29

Introduced in R2006a

 vrplay

10-113

vrrotvec
Calculate rotation between two vectors

Syntax
r = vrrotvec(a,b)
r = vrrotvec(a,b,options)

Description
r = vrrotvec(a,b) calculates a rotation needed to transform the 3D vector a to the 3D vector b.

r = vrrotvec(a,b,options) calculates the rotation with the default algorithm parameters
replaced by values defined in options.

Input Arguments
a, b — 3-D vector
vector

3-D vectors between which rotation is being calculated.
Data Types: single | double

options — Structure containing epsilon
structure

Structure containing the parameter epsilon that represents the value below which a number will be
treated as zero (default value is 1e-12). Default value of epsilon is 1e-12.
Data Types: struct

Output Arguments
r — Axis angle rotation vector
row vector

Axis-angle rotation, returned as a four element row vector. The first three elements specify the
rotation axis, and the last element defines the angle of rotation.

See Also
vrrotmat2vec on page 10-115 | vrrotvec2mat on page 10-116

Introduced in R2007b

10 Functions

10-114

vrrotmat2vec
Convert rotation from matrix to axis-angle representation

Syntax
r = vrrotmat2vec(m)
r = vrrotmat2vec(m,options)

Description
r = vrrotmat2vec(m) returns an axis-angle representation of rotation defined by the rotation
matrix m.

r = vrrotmat2vec(m,options) converts the rotation with the default algorithm parameters
replaced by values defined in options.

The options structure contains the parameter epsilon that represents the value below which a
number will be treated as zero (default value is 1e-12).

The result r is a four-element axis-angle rotation row vector. The first three elements specify the
rotation axis, and the last element defines the angle of rotation.

See Also
vrrotvec | vrrotvec2mat on page 10-116

Introduced in R2007b

 vrrotmat2vec

10-115

vrrotvec2mat
Convert rotation from axis-angle to matrix representation

Syntax
m = vrrotvec2mat(r)
m = vrrotvec2mat(r,options)

Description
m = vrrotvec2mat(r) returns a matrix representation of the rotation defined by the axis-angle
rotation vector, r.

m = vrrotvec2mat(r,options) returns a matrix representation of rotation defined by the axis-
angle rotation vector r, with the default algorithm parameters replaced by values defined in
options.

The options structure contains the parameter epsilon that represents the value below which a
number will be treated as zero (default value is 1e-12).

The rotation vector, r, is a row vector of four elements, where the first three elements specify the
rotation axis, and the last element defines the angle.

To rotate a column vector of three elements, multiply it by the rotation matrix. To rotate a row vector
of three elements, multiply it by the transposed rotation matrix.

See Also
vrrotvec | vrrotmat2vec on page 10-115

Introduced in R2007b

10 Functions

10-116

vrsetpref
Change Simulink 3D Animation preferences

Syntax
vrsetpref('preference_name', 'preference_value')

vrsetpref('factory')

Arguments
preference_name Name of the preference.
preference_value New value of the preference.

Description
This function sets the given Simulink 3D Animation preference to a given value. The following
preferences are defined. For preferences that begin with the string DefaultFigure or
DefaultWorld, these values are the default values for the corresponding vrfigure or vrworld
property:

Preference Description
AutoCreateThumbnail Creates a thumbnail of a virtual world when you open a

virtual world. The default is 'off'. Setting this
preference to 'on' can be helpful if you download
multiple virtual worlds from the Internet, without saving
them. Creating thumbnails on file open provides
thumbnails the next time someone browses through the
downloaded worlds.

DataTypeBool Specifies the handling of the virtual world Bool data
type for vrnode/setfield and vrnode/getfield.
Valid values are 'logical' and 'char'. If set to
'logical', the virtual world Bool data type is returned
as a logical value. If set to 'char', the Bool data type is
returned 'on' or 'off'. Default is 'logical'.

DataTypeInt32 Specifies handling of the virtual world Int32 data type
for vrnode/setfield and vrnode/getfield. Valid
values are 'int32' and 'double'. If set to 'int32',
the virtual world Int32 data type is returned as int32.
If set to 'double', the Int32 data type is returned as
'double'. Default is 'double'.

 vrsetpref

10-117

Preference Description
DataTypeFloat Specifies the handling of the virtual world float data

type for vrnode/setfield and vrnode/getfield.
Valid values are 'single' and 'double'. If set to
'single', the virtual world Float and Color data
types are returned as 'single'. If set to 'double', the
Float and Color data types are returned as 'double'.
Default is 'double'.

DefaultCanvasNavPanel Controls the appearance of the control panel in the
vr.canvas object. Values are:

• 'none'

Panel is not visible.
• 'minimized'

Panel appears as a minimized icon in the right-hand
corner of the viewer.

• 'translucent'

Panel floats half transparently above the scene.
• 'opaque'

Panel floats above the scene.

Default: 'none'
DefaultCanvasUnits Specifies default units for new vr.canvasobjects. See

vr.canvas for detailed description. Default is
'normalized'.

DefaultEditorMouseBehavior Specifies whether the mouse in the view pane is in
navigation mode or selection mode (for highlighting
corresponding nodes in the tree view pane). The default
is 'navigate'. To make selection mode the default, set
the preference to 'select'.

DefaultEditorHighlighting Specifies whether to highlight virtual world objects
selected in the view pane. The default is 'on'. To avoid
highlighting selected virtual objects by default, set the
preference to 'off'.

DefaultFigureAnti
Aliasing

Determines whether antialiasing is used by default for
new vrfigure objects. This preference also applies to
new vr.canvasobjects. Valid values are 'off' and
'on'.

DefaultFigureCapture
FileName

Specifies default file name for capturing viewer figures.
See get for detailed description. Default is '%f_anim_
%n.tif'.

DefaultFigureDeleteFcn Specifies the default callback invoked when closing a
vrfigure object.

10 Functions

10-118

Preference Description
DefaultFigureLighting Specifies whether the lights are rendered by default for

new vrfigure objects. This preference also applies to
new vr.canvas objects. Valid values are 'off' and
'on'.

DefaultFigureMax
TextureSize

Specifies the default maximum size of a texture used in
rendering new vrfigure objects. This preference also
applies to new vr.canvas objects. Valid values are
'auto' and 32 <= x <= video card limit, where x is a
power of 2.

DefaultFigureNavPanel Specifies the default appearance of the control panel in
the viewer. Valid values are 'opaque',
'translucent', 'none', 'halfbar', 'bar', and
'factory'. Default is 'halfbar'.

DefaultFigureNavZones Specifies whether the navigation zone is on or off by
default for new vrfigure objects. This preference also
applies to new vr.canvasobjects. Valid values are
'off' and 'on'.

DefaultFigurePosition Sets the default initial position and size of the Simulink
3D Animation Viewer window. Valid value is a vector of
four doubles.

DefaultFigureRecord2D
CompressMethod

Specifies the default compression method for creating 2-
D animation files for new vrfigure objects. Valid values
are '', 'auto', 'lossless', and 'codec_code'.

DefaultFigureRecord2D
CompressQuality

Specifies the default quality of 2-D animation file
compression for new vrfigure objects. Valid values are
0-100.

DefaultFigureRecord2D
FileName

Specifies the default 2-D offline animation file name for
new vrfigure objects.

DefaultFigureRecord2DFPS Specifies the default frames per second playback speed.

To have the 2D AVI animation play back at approximately
the same playback speed as the 3D virtual world
animation, set this preference to auto.

DefaultFigureRendering Specifies whether to render a vrfigure or vr.canvas
object. Turning off rendering improves performance. For
example, if your code does batch operations on a virtual
figure, you can turn off rendering during that processing
and then turn it back on after the processing.

DefaultFigureStatusBar Specifies whether the status bar appears by default at
the bottom of the Simulink 3D Animation Viewer for new
vrfigure objects. Valid values are 'off' and 'on'.

DefaultFigureTextures Specifies whether textures should be rendered by
default for new vrfigure objects. This preference also
applies to new vr.canvas objects. See get for detailed
description. Default is 'on'.

 vrsetpref

10-119

Preference Description
DefaultFigureToolBar Specifies whether the toolbar appears by default on the

Simulink 3D Animation Viewer for new vrfigure
objects. Valid values are 'off' and 'on'.

DefaultFigure Transparency Specifies whether or not transparency information is
taken into account when rendering for new vrfigure
objects. This preference also applies to new vr.canvas
objects. Valid values are 'off' and 'on'.

DefaultFigureWireframe Specifies whether objects are drawn as solids or
wireframes by default for new vrfigure objects. This
preference also applies to new vr.canvas objects. Valid
values are 'off' and 'on'.

DefaultViewer Specifies which viewer is used to view a virtual scene.

• 'internal'

Default Simulink 3D Animation Viewer.
• 'web'

Web browser becomes viewer. This is the current
Web browser virtual world plug-in.

DefaultWorldRecord3D
FileName

Specifies the default 3-D animation file name for new
vrworld objects.

DefaultWorldRecordMode Specifies the default animation recording mode for new
vrworld objects. Valid values are 'manual' and
'scheduled'.

DefaultWorldRecord
Interval

Specifies the default start and stop times for scheduled
animation recording for new vrworld objects. Valid
value is a vector of two doubles.

DefaultWorldRemoteView Specifies whether the virtual world is enabled by default
for remote viewing for new vrworld objects. Valid
values are 'off' and 'on'.

DefaultWorldTimeSource Specifies the default source of the time for new vrworld
objects. Valid values are 'external' and 'freerun'.

10 Functions

10-120

Preference Description
Editor Specifies which virtual world editor to use. Path to the

virtual world editor. If this path is empty, the MATLAB
editor is used.

The path setting is active only if you select the Custom
option.

To open a virtual world file in a third-party editor, do not
use the vredit command. For example, to open a
virtual world in the Ligos V-Realm Builder editor:

1 Set the default editor to V-Realm Builder. In
MATLAB, enter:

vrsetpref('Editor','*VREALM');
2 To open a file in the V-Realm editor, in MATLAB

navigate to a virtual world file, right-click, and
select Edit.

Note The vredit command opens the 3D World
Editor, regardless of the default editor preference
setting.

EditorPreserveLayout Specifies whether the 3D World Editor starts up with a
saved version of the layout of a virtual world when you
exited it or reverts to the default layout. The layout of
the virtual world display pane includes settings for the
view, viewpoints, navigation, and rendering. Valid values
are 'off' and 'on'. The default is on (use saved
layout).

HttpPort IP port number used to access the Simulink 3D
Animation server over the Web via HTTP. If you change
this preference, you must restart the MATLAB software
before the change takes effect.

TransportBuffer Length of the transport buffer (network packet overlay)
for communication between the Simulink 3D Animation
server and its clients.

TransportTimeout Amount of time the Simulink 3D Animation server waits
for a reply from the client. If there is no response from
the client, the Simulink 3D Animation server disconnects
from the client.

VrPort IP port used for communication between the Simulink
3D Animation server and its clients. If you change this
preference, you must restart the MATLAB software
before the change takes effect.

When you use 'factory' as a single argument, all preferences are reset to their default values. If
you use 'factory' for a preference value, that single preference is reset to its default.

 vrsetpref

10-121

The HttpPort, VrPort, and TransportBuffer preferences affect Web-based viewing of virtual
worlds. DefaultFigurePosition and DefaultNavPanel affect the Simulink 3D Animation Viewer.
Changes to the HttpPort or VrPort preferences take effect only after you restart the MATLAB
software.

DefaultFigureNavPanel — Controls the appearance of the navigation panel in the Simulink 3D
Animation Viewer. For example, setting this value to 'translucent' causes the navigation panel to
appear translucent.

DefaultViewer — Determines whether the virtual scene appears in the default Simulink 3D
Animation Viewer or in your Web browser.

DefaultViewer Setting Description
'internal' Default Simulink 3D Animation Viewer.
'web' Viewer is the default Web browser with the virtual world

plug-in.

Editor — Contains a path to the virtual world editor executable file. When you use the edit
command, Simulink 3D Animation runs the virtual world editor executable with all parameters
required to edit the virtual world file.

When you run the editor, Simulink 3D Animation uses the Editor preference value as if you typed it
into a command line. The following tokens are interpreted:

%matlabroot Refers to the MATLAB root folder
%file Refers to the virtual world 3D file name

For instance, a possible value for the Editor preference is

`%matlabroot\bin\win64\meditor.exe %file'

If this preference is empty, the MATLAB editor is used.

HttpPort -- Specifies the network port to be used for remote Web access. The port is given in the
Web URL as follows:

http://server.name:port_number

The default value of this preference is 8123.

TransportBuffer — Defines the size of the message window for client-server communication. This
value determines how many messages, at a maximum, can travel between the client and the server at
one time.

Generally, higher values for this preference make the animation run more smoothly, but with longer
reaction times. (More messages in the line create a buffer that compensates for the unbalanced
delays of the network transfer.)

The default value is 5, which is optimal for most purposes. You should change this value only if the
animation is significantly distorted or the reaction times are very slow. On fast connections, where
delays are introduced more by the client rendering speed, this value has very little effect. Viewing on
a host computer is equivalent to an extremely fast connection. On slow connections, the correct value
can improve the rendering speed significantly but, of course, the absolute maximum is determined by
the maximum connection throughput.

10 Functions

10-122

VrPort — Specifies the network port to use for communication between the Simulink 3D Animation
server (host computer) and its clients (client computers). Normally, this communication is completely
invisible to the user. However, if you view a virtual world from a client computer, you might need to
configure the security network system (firewall) so that it allows connections on this port. The default
value of this preference is 8124.

See Also
vrgetpref

Introduced before R2006a

 vrsetpref

10-123

vrspacemouse
Create space mouse object

Syntax
mouse = vrspacemouse(id)

Description
mouse = vrspacemouse(id) creates a space mouse object capable of interfacing with a space
mouse input device. The id parameter is a string that specifies the space mouse connection: COM1,
COM2, COM3, COM4, USB1, USB2, USB3, or USB4.

The vrspacemouse object has several properties that influence the behavior of the space mouse
input device. The properties can be read or modified using dot notation (e.g., mouse.DominantMode
= true;).

Properties
Valid properties are (property names are case-sensitive):

Property Description
PositionSensitivity Mouse sensitivity for translations. Higher values correspond

to higher sensitivity.
RotationSensitivity Mouse sensitivity for rotations. Higher values correspond to

higher sensitivity.
DisableRotation Fixes the rotations at initial values, allowing you to change

positions only.
DisableTranslation Fixes the positions at the initial values, allowing you to

change rotations only.
DominantMode If this property is true, the mouse accepts only the prevailing

movement and rotation and ignores the others. This mode is
very useful for beginners using a space mouse.

UpperPositionLimit Position coordinates for the upper limit of the mouse.
LimitPosition Enables mouse position limits. If false, the object ignores the

UpperPositionLimit and LowerPositionLimit
properties.

LowerPositionLimit Position coordinates for the lower limit of the mouse.
NormalizeOutputAngle Determines whether the integrated rotation angles should

wrap on a full circle (360°). This is not used when you read
the Output Type as Speed.

InitialPosition Initial condition for integrated translations. This is not used
when you set the Output Type to Speed.

10 Functions

10-124

Property Description
InitialRotation Initial condition for integrated rotations. This is not used

when you set the Output Type to Speed.

Methods
Method Description
button b = button(mouse, n) reads the status of space mouse

button number n. Button status is returned as logical 0 if not
pressed and logical 1 if pressed. n can be a vector to return
multiple buttons.

close close(mouse) closes and invalidates the space mouse
object. The object cannot be used once it is closed.

position p = position(mouse, n) reads the position of space
mouse axis number n. n can be a vector to return positions
of multiple axes. Translations and rotations are integrated.
Outputs are the position and orientation in the form of roll/
pitch/yaw angles.

speed s = speed(mouse, n) reads the speed of space mouse
axis number n. n can be a vector to return the speeds of
multiple axes. No transformations are done. Outputs are the
translation and rotation speeds.

viewpoint p = viewpoint(mouse) reads the space mouse
coordinates in virtual world viewpoint format. Translations
and rotations are integrated. Outputs are the position and
orientation in the form of an axis and an angle. You can use
these values as viewpoint coordinates in virtual world.

See Also
“Set Simulink 3D Animation Preferences” on page 2-5

Introduced in R2007b

 vrspacemouse

10-125

vr.utils.stereo3d class

Stereoscopic vision settings for vr.canvas and vr.figure objects

Description

Tip Use the vr.utils.stereo3d class for advanced tuning of stereoscopic viewer and canvas
properties. You can select and use basic stereoscopic settings from the Viewer menu.

Specifies these stereoscopic vision properties:

• Active, anaglyph, or no stereoscopic vision
• Camera offset
• Camera angle
• Color filter for the left and right cameras
• Horizontal image translation (HIT)

Use a vr.utils.stereo3d object to set the Stereo3D, Stereo3DCameraOffset, and
Stereo3DHIT stereoscopic vision properties of vrfigure and vr.canvas objects. Specifying a
vr.utils.stereo3d object to set one vrfigure and vr.canvas property also sets the other
stereoscopic vision properties. Using a vr.utils.stereo3d object also specifies color filters for the
left and right cameras. You cannot set camera color filters directly using the vrfigure/set method
or vr.canvas properties.

Construction
stereoVision = vr.utils.stereo3d.OFF disables stereoscopic vision.

stereoVision = vr.utils.stereo3d.ACTIVE enables active stereoscopic vision.

stereoVision = vr.utils.stereo3d.ANAGLYPH enables red-cyan anaglyph stereoscopic vision.

stereoVision = vr.utils.stereo3d.RED_CYAN enables red-cyan anaglyph stereoscopic vision.

stereoVision = vr.utils.stereo3d.ANAGLYPH_GREEN_MAGENTA enables green-magenta
anaglyph stereoscopic vision.

stereoVision = vr.utils.stereo3d.ANAGLYPH_RED_GREEN enables red-green anaglyph
stereoscopic vision.

stereoVision = vr.utils.stereo3d.ANAGLYPH_RED_BLUE enables red-blue anaglyph
stereoscopic vision.

stereoVision = vr.utils.stereo3d.ANAGLYPH_YELLOW_BLUE enables yellow-blue anaglyph
stereoscopic vision.

10 Functions

10-126

Output Arguments

stereoVision — Stereoscopic vision settings for vr.canvas and vrfigure objects
vr.utils.stereo3d object

Stereoscopic vision settings for vr.canvas and vrfigure objects, represented by a
vr.utils.stereo3d object.

Properties
CameraAngle — Camera angle
vr.utils.stereo3D.DEFAULT_CAMERA_ANGLE | radians

Camera angle, specified using the predefined DEFAULT_CAMERA_ANGLE or in radians. This property
is in effect when you enable stereoscopic vision.

This property does not apply to vr.canvas or vrfigure objects.

CameraOffset — Camera offset
0.1 (default) | floating-point number between 0 and 1

Camera offset, specified as a number representing the distance in virtual world units of left/right
camera from parallax. The parallax is the difference in the apparent position of an object viewed from
two cameras.

This property sets the Stereo3DCameraOffset property of a vr.canvas or vrfigure object.

HIT — Horizontal image translation
predefined DEFAULT_HIT | floating-point number

Horizontal image translation, specified as either the predefined DEFAULT_HIT or as a floating-point
number from 0 through 1, inclusive. The number of pixels for stereo 3D horizontal image translation
(HIT) derives from this number. Horizontal image translation is the horizontal relationship of the two
stereo images. By default, the background image is at zero and the foreground image appears to pop
out from the monitor toward the person viewing the virtual world. The larger the value, the further
back the background appears to be.

This property sets the Stereo3DHIT property of a vr.canvas or vrfigure object.

LeftCameraFilter — Color filter of left camera
row vector of nine floating-point numbers | predefined filter

Color filter of the left camera, specified as a row vector of nine floating-point numbers or using a
predefined filter.

If you specify a row vector, use floating-point numbers from 0 through 1. The first three numbers
represent the red value, the second three numbers represent the green value, and the last three
numbers represent the blue value. For example, specifying 1 for the first three numbers and zeros for
the other numbers produces a pure red filter.

The predefined filters are:

• CAMERA_FILTER_FULL
• CAMERA_FILTER_RED

 vr.utils.stereo3d class

10-127

• CAMERA_FILTER_CYAN
• CAMERA_FILTER_GREEN
• CAMERA_FILTER_MAGENTA
• CAMERA_FILTER_YELLOW
• CAMERA_FILTER_BLUE

This property specifies the left camera filter for vr.canvas or vrfigure objects.
Example: stereo3d_object.LeftCameraFilter = [0.1 0.5 0.5 0.0 0.0 0.0 1.0 0.5
0.5];

Example: stereo3d_object.LeftCameraFilter = stereo3d_object.CAMERA_FILTER_RED

Mode — Stereoscopic vision mode
read only

Stereoscopic vision mode. Read only.

• STEREO3D_OFF — No stereoscopic vision.
• STEREO3D_ACTIVE — Active stereoscopic vision. Stereoscopic vision uses quad-buffered

rendering. You can use a graphics card driver to output stereoscopic vision. This mode allows
active stereoscopic vision via shutter glasses.

• STEREO3D_ANAGLYPH — Anaglyph stereoscopic vision. Stereoscopic vision is enabled using red-
cyan anaglyph. Use appropriate anaglyph 3D glasses to see the effect.

This property sets the Stereo3D property of a vr.canvas or vrfigure object.

RightCameraFilter — Color filter of right camera
row vector of nine floating-point numbers | predefined filter

Color filter of the right camera, specified as a row vector of nine floating-point numbers or using a
predefined filter.

If you specify a row vector, use floating-point numbers from 0 through 1. The first three numbers
represent the red value, the second three numbers represent the green value, and the last three
numbers represent the blue value. For example, specifying 1 for the first three numbers and zeros for
the other numbers produces a pure red filter.

The predefined filters are:

• CAMERA_FILTER_FULL
• CAMERA_FILTER_RED
• CAMERA_FILTER_CYAN
• CAMERA_FILTER_GREEN
• CAMERA_FILTER_MAGENTA
• CAMERA_FILTER_YELLOW
• CAMERA_FILTER_BLUE

This property specifies the right camera filter for vr.canvas or vrfigure objects.
Example: stereo3d_object.RightCameraFilter = [0.1 0.5 0.5 0.0 0.0 0.0 1.0 0.5
0.5];

10 Functions

10-128

Example: stereo3d_object.RightCameraFilter = stereo3d_object.CAMERA_FILTER_RED

Examples

Define and Apply Stereoscopic Vision Settings

Create a virtual world.

w = vrworld('octavia_scene');
open(w);
c = vr.canvas(w);

Specify stereoscopic vision settings.

s3d = vr.utils.stereo3d.ANAGLYPH_RED_CYAN;
s3d.CameraOffset = 0.05;
s3d.CameraAngle = pi/128;

Modify the red component of filter for the left camera.

 vr.utils.stereo3d class

10-129

s3d.LeftCameraFilter(1:3) = s3d.LeftCameraFilter(1:3)...
 + [0.1 -0.05 -0.05];

Apply stereoscopic vision settings of vr.utils.stereo3d object s3d to vr.canvas object c.

 set(c,'Stereo3D',s3d)

See Also
vr.canvas | vrfigure

Topics
“View a Virtual World in Stereoscopic Vision” on page 7-45

Introduced in R2015a

10 Functions

10-130

vrupdaterobot
Update RigidBodyTree robot pose

Syntax
vrupdaterobot(RBT, tforms, config)

Description
vrupdaterobot(RBT, tforms, config) updates the robot pose from its current configuration
using the config argument.

Examples

Add Robot to World and Change its Pose

This example shows you how to insert a robot into a virtual world and update its pose

Import the Robot and Setup the World

Import the KUKA LFR iiwa robot from its URDF definition and insert it to the virtual world created
from robot_scene.wrl.

RBT = importrobot('iiwa7.urdf');
RBT.DataFormat = 'row';
robotWorld = vrworld('robot_scene');
open(robotWorld);

Get Transforms of Current Pose of the Robot

The tforms output argument contains a list of transforms that describe the robot pose in its initial or
'home' configuration.

[node, W, tforms] = vrinsertrobot(robotWorld, RBT);
vrfigure(robotWorld);

 vrupdaterobot

10-131

Change the Pose of the Robot

vrupdaterobot(RBT, tforms, randomConfiguration(RBT));
vrdrawnow;
vrfigure(robotWorld);

10 Functions

10-132

Input Arguments
RBT — Robot description
rigidBodyTree object

Robotics System Toolbox rigidBodyTree object. For more information, see rigidBodyTree
(Robotics System Toolbox).

tforms — Robot transforms
cell array

List of robot transforms, specified as a cell array of vrnode objects.

config — Desired end configuration
structure | vector

Desired pose of the robot, specified in the same format as the RBT.DataFormat field of the
rigidBodyTree object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
struct

 vrupdaterobot

10-133

See Also
vrinsertrobot | rigidBodyTree (Robotics System Toolbox)

Introduced in R2018b

10 Functions

10-134

vrview
View virtual world using Simulink 3D Animation viewer or Web browser

Syntax
vrview

x = vrview('filename')

x = vrview('filename','-internal')

x = vrview('filename','-web')

Description
vrview opens the default Web browser and loads the Simulink 3D Animation software Web page
containing a list of virtual worlds available for viewing.

x = vrview('filename') creates a virtual world associated with the .wrl file, opens the virtual
world, and displays it in the Simulink 3D Animation Viewer or the Web browser depending on the
value of the DefaultViewer preference. The handle to the virtual world is returned.

x = vrview('filename','-internal') creates a virtual world associated with the wrl file,
opens the virtual world, and displays it in the Simulink 3D Animation Viewer.

x = vrview('filename','-web') creates a virtual world associated with the .wrl file, opens the
virtual world, and displays it in your Web browser.

vrview('filename#viewpointname') specifies a default viewpoint.

See Also
vrplay | vrworld | vrworld/open | vrworld/view

Introduced before R2006a

 vrview

10-135

vrwho
List virtual worlds in memory

Syntax
vrwho

x = vrwho

Description
If you do not specify an output parameter, vrwho displays a list of virtual worlds in memory in the
MATLAB Command Window.

If you specify an output parameter, vrwho returns a vector of handles to existing vrworld objects,
including those opened from the Simulink interface.

See Also
vrclear | vrwhos | vrworld

Introduced before R2006a

10 Functions

10-136

vrwhos
List details about virtual worlds in memory

Syntax
vrwhos

Description
vrwhos displays a list of virtual worlds currently in memory, with a description, in the MATLAB
Command Window. The relation between vrwho and vrwhos is similar to the relation between who
and whos.

See Also
vrclear | vrwho

Introduced before R2006a

 vrwhos

10-137

vrworld
Create new vrworld object associated with virtual world

Syntax
myworld = vrworld(filename)

myworld = vrworld(filename,'reuse')

myworld = vrworld(filename, 'new')

myworld = vrworld

myworld = vrworld('')

myworld = vrworld([])

Arguments
filename String containing the name of the virtual world 3D file from which the virtual

world is loaded. You can specify .wrl, .x3d, or .x3dv). If no file extension is
specified, the file extension .wrl is assumed.

'new' Argument to create a virtual world associated with filename.

Description
myworld = vrworld(filename) creates a virtual world associated with the virtual world 3D file
filename and returns its handle. If the virtual world already exists, a handle to the existing virtual
world is returned. Specify the file name as a string.

myworld = vrworld(filename,'reuse') has the same functionality as myworld =
vrworld(filename).

myworld = vrworld('filename', 'new') creates a virtual world associated with the virtual
world 3D file filename and returns its handle. It always creates a new virtual world object, even if
another vrworld object associated with the same file already exists.

myworld = vrworld creates an invalid vrworld handle

myworld = vrworld('') creates an empty vrworld object that is not associated with any virtual
world 3D file

myworld = vrworld([]) returns an empty array of returns an empty array of vrworld handles.

A vrworld object identifies a virtual world in a way very similar to a handle. All functions that affect
virtual worlds accept a vrworld object as an argument to identify the virtual world.

If the given virtual world already exists in memory, the handle to the existing virtual world is
returned. A second virtual world is not loaded into memory. If the virtual world does not exist in
memory, it is loaded from the associated virtual world 3D file. The newly loaded virtual world is
closed and must be opened before you can use it.

10 Functions

10-138

The vrworld object associated with a virtual world remains valid until you use either delete or
vrclear.

Examples
myworld = vrworld('vrpend.wrl')

Method Summary
Method Description
addexternproto Add externproto declaration to virtual world.
close Close virtual world
delete Remove virtual world from memory
edit Open virtual world file in external virtual world editor
get Property value of vrworld object
isvalid 1 if vrworld object is valid, 0 if not
nodes List nodes available in virtual world
open Open virtual world
reload Reload virtual world from virtual world 3D file
save Write virtual world to virtual world 3D file
set Change property values of vrworld object
view View virtual world

See Also
vrworld/close | vrworld/delete | vrworld/open | “Create vrworld Object for a Virtual World”
on page 4-2 | “Open a Virtual World with MATLAB” on page 4-3

Introduced before R2006a

 vrworld

10-139

vrworld/addexternproto
Add externproto declaration to virtual world

Syntax
addexternproto(vrworld_object, protofile, protoname)

addexternproto(vrworld_object, protofile, protoname, protodef)

Arguments
vrworld_object A vrworld object representing the virtual world.
protofile String containing the name of the prototype file from which the

EXTERNPROTO declaration is added.
protoname String containing the name of the EXTERNPROTO declaration.
protodef String containing a new name for the EXTERNPROTO declaration.

Description
addexternproto(vrworld_object, protofile, protoname) adds an EXTERNPROTO
declaration from file protofile to the virtual world. The handle vrworld_object refers to the
virtual world. The EXTERNPROTO declaration is identified as protoname. If protoname is a cell array
of identifiers, the function adds multiple EXTERNPROTOs from one file to the virtual world.

addexternproto(vrworld_object, protofile, protoname, protodef) adds an
EXTERNPROTO declaration from file protofile to the virtual world. The handle vrworld_object
refers to the virtual world. The EXTERNPROTO declaration is identified as protoname. If protoname
is a cell array of identifiers, the function adds multiple EXTERNPROTOs from one file to the virtual
world. This command then renames the new EXTERNPROTO declaration to protodef.

In both cases, the EXTERNPROTO declaration becomes equivalent to the PROTO declaration. In other
words, protoname or protodef becomes an internal PROTO type in the virtual scene associated with
vrworld_object. After you save the virtual world, these PROTO declarations no longer require a
reference to the original file, protofile, that contains the EXTERNPROTO declarations.

See Also
vrworld/close | vrworld/delete | vrworld/open | “Create vrworld Object for a Virtual World”
on page 4-2 | “Open a Virtual World with MATLAB” on page 4-3

Introduced in R2008b

10 Functions

10-140

vrworld/close
Close virtual world

Syntax
close(vrworld_object)

Arguments
vrworld_object A vrworld object representing the virtual world.

Description
This method changes the virtual world from an opened to a closed state:

• If the world was opened more than once, you must use an appropriate number of close calls
before the virtual world closes.

• If vrworld_object is a vector of vrworld objects, all associated virtual worlds close.
• If the virtual world is already closed, close does nothing.

Opening and closing virtual worlds is a mechanism of memory management. When the system needs
more memory and the virtual world is closed, you can discard its contents at any time.

Generally, you should close a virtual world when you no longer need it. This allows you to reuse the
memory it occupied. The vrworld objects associated with this virtual world stay valid after it is
closed, so the virtual world can be opened again without creating a new vrworld object.

Examples
myworld = vrworld('vrpend.wrl')
open(myworld)
close(myworld)

See Also
vrworld | vrworld/delete | vrworld/open | “Close and Delete a vrworld Object” on page 4-9

Introduced before R2006a

 vrworld/close

10-141

vrworld/delete
Remove virtual world from memory

Syntax
delete(vrworld_object)

Arguments
vrworld_object A vrworld object representing a virtual world.

Description
The delete method removes from memory the virtual world associated with a vrworld object. The
virtual world must be closed before you can delete it.

Deleting a virtual world frees the virtual world from memory and invalidates all existing vrworld
objects associated with the virtual world.

If vrworld_object is a vector of vrworld objects, all associated virtual worlds are deleted.

You do not commonly use this method. One of the possible reasons to use this method is to ensure
that a large virtual world is removed from memory before another memory-consuming operation
starts.

See Also
vrworld | vrclear | vrworld/delete | vrworld/open | “Close and Delete a vrworld Object” on
page 4-9

Introduced before R2006a

10 Functions

10-142

vrworld/edit
Open virtual world file in virtual world editor

Syntax
edit(vrworld_object)

Arguments
vrworld_object A vrworld object representing a virtual world.

Description
The edit method opens the virtual world 3D file associated with the vrworld object in a virtual
world editor. The Editor preference specifies the editor to use. See vrsetpref for details on setting
preferences.

The editor saves any changes you make directly to a virtual world file. If the virtual world is open,

• Use the save command in the virtual world editor to save the changes to a virtual world file. In
the MATLAB interface, the changes appear after you reload the virtual world.

• Use the save method in the MATLAB software to replace the modified virtual world 3D file. Any
changes you made in the editor are lost.

See Also
vrworld/reload | vrworld/save | vrworld/delete | vrworld/open | “Close and Delete a
vrworld Object” on page 4-9 | “Create vrworld Object for a Virtual World” on page 4-2

Introduced before R2006a

 vrworld/edit

10-143

vrworld/get
Property value of vrworld object

Syntax
get(vrworld_object)

x = get(vrworld_object)

x = get(vrworld_object, 'property_name')

Arguments
vrworld_object A vrworld object representing a virtual world.
property_name Name of the property.

Description
get(vrworld_object) displays all the virtual world properties and their values.

x = get(vrworld_object) returns an M-by-1 structure where the field names are the names of
the virtual world properties. Each field contains the associated property value. M is equal to
length(vrworld_object).

x = get(vrworld_object, 'property_name') returns the value of the specified property.

• If vrworld_object is a vector of vrworld handles, the get method returns an M-by-1 cell array
of values where M is equal to length(vrworld_object).

• If property_name is a 1-by-N or N-by-1 cell array of strings containing field names, the get
method returns an M-by-N cell array of values.

The following are properties of vrworld objects. Names are not case sensitive.

Property Value Description
Clients Scalar Number of clients currently viewing the virtual

world. Read only.
ClientUpdates 'off' | 'on'

Default: 'on'

Client cannot or can update the virtual scene.
Read/write.

Description String.

Default: automatically taken from
the virtual world 3D file property
title

Description of the virtual world as it appears on
the main Web page. Read/write.

Figures Vector of vrfigure objects Vector of handles to Simulink 3D Animation
Viewer windows currently viewing the virtual
world. Read only.

10 Functions

10-144

Property Value Description
FileName String Name of the associated virtual world 3D file.

Read only.
Nodes Vector of vrnode objects Vector of vrnode objects for all named nodes in

the virtual world. Read only.
Open 'off' | 'on'

Default: 'off'

Indicates a closed or open virtual world. Read
only.

Record3D 'off' | 'on'

Default: 'off'

Enables 3-D animation recording. Read/write.

Record3DFileName String.

Default: '%f_anim_%n.wrl'

3-D animation file name. The string can contain
tokens that are replaced by the corresponding
information when the animation recording takes
place. For details, see “File Name Tokens” on
page 4-14. Read/write.

Recording 'off' | 'on'

Default: 'off'

Animation recording toggle. This property acts
as the master recording switch. Read/write.

RecordMode 'manual' | 'scheduled'

Default: 'manual'

Animation recording mode. Read/write.

RecordInterval Vector of two doubles

Default: [0 0]

Start and stop times for scheduled animation
recording. Corresponds to the virtual world
object Time property. Read/write.

RemoteView 'off' | 'on'

Default: 'off'

Remote access flag. If the virtual world is
enabled for remote viewing, it is set to 'on';
otherwise, it is set to 'off'. Read/write.

Rendering 'off' | 'on'

Default: 'on'

Render vrworld object in the Simulink 3D
Animation Viewer, specifying 'on' or 'off'.
Turning off rendering improves performance.
For example, if your code does batch operations
on a virtual world, you can turn off rendering
during that processing and then turn it back on
after the processing.

Time Double Current time in the virtual world. Read/write.
TimeSource 'external' | 'freerun'

Default: 'external'

Source of the time for the virtual world. If set to
'external', time in the scene is controlled
from the MATLAB interface (by setting the Time
property) or the MATLAB interface (simulation
time).

If set to 'freerun', time in the scene advances
independently based on the system timer. Read/
write.

 vrworld/get

10-145

Property Value Description
View 'off' | 'on'

Default: 'on'

Indicates an unviewable or viewable virtual
world. Read/write.

The ClientUpdates property is set to 'on' by default and can be set by the user. When it is set to
'off', the viewers looking at this virtual world should not update the view according to the virtual
world changes. That is, the view is frozen until this property is changed to 'on'. This is useful for
preventing tearing effects with complex animations. Before every animation frame, set
ClientUpdates to 'off', make the appropriate modifications to the object positions, and then
switch ClientUpdates back to 'on'.

The Description property defaults to '(untitled)' and can be set by the user. If the virtual
world is loaded from a virtual world 3D file containing a WorldInfo node with a title property, the
Description property is loaded from the virtual world 3D file instead.

The Nodes property is valid only when the virtual world is open. If the virtual world is closed, Nodes
always contains an empty vector.

The RemoteView property is set to 'off' by default and can be set by the user. If it is set to 'on',
all viewers can access the virtual world through the Web interface. If it is set to 'off', only host
viewers can access it.

The View property is set to 'on' by default and can be set by the user. When it is set to 'off', the
virtual world is not accessible by the viewer. You rarely use this property.

See Also
vrworld | vrworld/set

Introduced before R2006a

10 Functions

10-146

vrworld/isvalid
1 if vrworld object is valid, 0 if not

Syntax
x = isvalid(vrworld_object)

Arguments
vrworld_object A vrworld object representing a virtual world.

Description
A vrworld object is considered valid if its associated virtual world still exists.

x = isvalid(vrworld_object) returns an array that contains a 1 when the elements of
vrworld_object are valid vrworld objects, and returns a 0 when they are not.

You use this method to check whether the vrworld object is still valid. Using a delete or vrclear
command can make a vrworld object invalid.

See Also
isvalid | vrnode/isvalid

Introduced before R2006a

 vrworld/isvalid

10-147

vrworld/nodes
List nodes available in virtual world

Syntax
nodes(vrworld_object, '-full')

x = nodes(vrworld_object, '-full')

Arguments
vrworld_object A vrworld object representing a virtual world.
'-full' Optional switch to obtain a detailed list of nodes and fields.

Description
If you give an output argument, the method nodes returns a cell array of the names of all available
nodes in the world. If you do not give an output argument, the list of nodes is displayed in the
MATLAB window.

You can use the '-full' switch to obtain a detailed list that contains not only the nodes, but also all
their fields. This switch affects only the output to the MATLAB Command Window.

The virtual world must be open for you to use this method.

See Also
vrworld | vrworld/open | vrnode

Introduced before R2006a

10 Functions

10-148

vrworld/open
Open virtual world

Syntax
open(vrworld_object)

Arguments
vrworld_object A vrworld object representing a virtual world.

Description
The open method opens the virtual world. When the virtual world is opened for the first time, the
virtual world internal representation is created based on the associated virtual world 3D file.

If the input argument is an array of virtual world handles, all the virtual worlds associated with those
handles are opened.

The virtual world must be open for you to use it. You can close the virtual world with the method
close.

You can call the method open more than once, but you must use an appropriate number of close
calls before the virtual world returns to a closed state.

Examples
Create two vrworld objects by typing

myworld1 = vrworld('vrmount.wrl')
myworld2 = vrworld('vrpend.wrl')

Next, create an array of virtual world handles by typing

myworlds = [myworld1 myworld2];

open(myworlds) opens both of these virtual worlds.

See Also
vrworld | vrworld/close | “Open a Virtual World with MATLAB” on page 4-3

Introduced before R2006a

 vrworld/open

10-149

vrworld/reload
Reload virtual world from virtual world 3D file

Syntax
reload(vrworld_object)

Arguments
vrworld_object A vrworld object representing a virtual world.

Description
The reload method reloads the virtual world from the virtual world 3D file associated with the
vrworld object. If the input argument is an array of virtual world handles, all the virtual worlds
associated with those handles are reloaded. The virtual world must be open for you to use this
method.

reload forces all the clients currently viewing the virtual world to reload it. This is useful when there
are changes to the virtual world 3D file.

See Also
vrworld/edit | vrworld/open | vrworld/save | “Open a Virtual World with MATLAB” on page 4-
3

Introduced before R2006a

10 Functions

10-150

vrworld/save
Write virtual world to virtual world 3D file

Syntax
save(vrworld_object,file)

save(vrworld_object,file,'-export')

save(vrworld_object,file,'-nothumbnail')

save(vrworld_object,file,'-export','-nothumbnail')

Arguments
vrworld_object vrworld object representing a virtual world
file Name of virtual world 3D file, specified as a string. You can

specify a .wrl (VRML), .x3dv (XML encoded) or .x3d (X3D
in classic or XML format) file.

'-export' Saves a complete copy of the virtual world, including all
resources used by the world, located relative to the exported
virtual world location. Resources include virtual world
elements such as textures and resources from the Simulink
3D Editor library. This option supports using a Simulink 3D
Animation virtual world outside of Simulink 3D Animation.

'-nothumbnail' Suppress creating a thumbnail image used for virtual world
preview.

Description
The save method saves the current virtual world to a VRML97 file or X3D file, based on the file
extension (.wrl , .x3dv, or.x3d) that you specify. The virtual world must be open for you to use this
method.

If the virtual world is associated to a VRML file, it can be saved to the VRML or X3D file formats. If
the virtual world is associated to an X3D file, it can be saved only to one of the X3D file formats.

If you specify a VRML file, the resulting file is a VRML97 compliant UTF-8 encoded text file.

Lines are indented using spaces. Line ends are encoded as CR-LF or LF, according to the local system
default. Values are separated by spaces.

You can use the optional '-export' and '-nothumbnail' arguments either by themselves or
together, in addition to the required vrworld_object and file arguments.

See Also
vrworld/edit | vrworld/open | vrworld/reload | “Close and Delete a vrworld Object” on page
4-9

 vrworld/save

10-151

Introduced before R2006a

10 Functions

10-152

vrworld/set
Change property values of vrworld object

Syntax
set(vrworld_object, 'property_name', property_value)

Arguments
vrworld_object Name of a vrworld object representing a virtual world.
property_name Name of the property.
property_value New value of the property.

Description
You can change the values of the read/write virtual world properties. The following are properties of
vrworld objects. Names are not case sensitive.

Property Value Description
Clients Scalar Number of clients currently viewing the

virtual world. Read only.
ClientUpdates 'off' | 'on'

Default: 'on'

Client cannot or can update the virtual scene.
Read/write.

Description String.

Default: automatically taken from
the virtual world 3D file property
title

Description of the virtual world as it appears
on the main Web page. Read/write.

Figures Vector of vrfigure objects Vector of handles to Simulink 3D Animation
viewer windows currently viewing the virtual
world. Read only.

FileName String Name of the associated virtual world 3D file.
Read only.

Nodes Vector of vrnode objects Vector of vrnode objects for all named nodes
in the virtual world. Read only.

Open 'off' | 'on'

Default: 'off'

Indicates a closed or open virtual world. Read
only.

Record3D 'off' | 'on'

Default: 'off'

Enables 3-D animation recording. Read/write.

 vrworld/set

10-153

Property Value Description
Record3DFileName String.

Default: '%f_anim_%n.%e'

3D animation file name. The string can
contain tokens that are replaced by the
corresponding information when the
animation recording takes place. For details,
see “File Name Tokens” on page 4-14. Read/
write.

Recording 'off' | 'on'

Default: 'off'

Animation recording toggle. This property
acts as the master recording switch. Read/
write.

RecordMode 'manual' | 'scheduled'

Default: 'manual'

Animation recording mode. Read/write.

RecordInterval Vector of two doubles

Default: [0 0]

Start and stop times for scheduled animation
recording. Corresponds to the virtual world
object Time property. Read/write.

RemoteView 'off' | 'on'

Default: 'off'

Remote access flag. If the virtual world is
enabled for remote viewing, it is set to 'on';
otherwise, it is set to 'off'. Read/write.

Time Double Current time in the virtual world. Read/write.
TimeSource 'external' | 'freerun'

Default: 'external'

Source of the time for the virtual world. If set
to 'external', time in the scene is
controlled from the MATLAB interface (by
setting the Time property) or the Simulink
interface (simulation time).

If set to 'freerun', time in the scene
advances independently based on the system
timer. Read/write.

View 'off' | 'on'

Default: 'on'

Indicates an unviewable or viewable virtual
world. Read/write.

See Also
vrworld | vrworld/get

Introduced before R2006a

10 Functions

10-154

vrworld/view
View virtual world

Syntax
view(vrworld_object)

x = view(vrworld_object)

x = view(vrworld_object,'-internal')

x = view(vrworld_object,'-web')

Arguments
vrworld_object A vrworld object representing a virtual world.

Description
The view method opens the default virtual world viewer on the host computer and loads the virtual
world associated with the vrworld object into the viewer window. You specify the default virtual
world viewer using the DefaultViewer preference. The virtual world must be open for you to use
this method.

x = view(vrworld_object) opens the default virtual world viewer on the host computer and loads
the virtual world associated with the vrworld object into the viewer window. If the Simulink 3D
Animation Viewer is used, view also returns the vrfigure handle of the viewer window. If a Web
browser is used, view returns an empty array of vrfigure handles.

x = view(vrworld_object,'-internal') opens the virtual world in the Simulink 3D Animation
Viewer.

x = view(vrworld_object,'-web') opens the virtual world in the Web browser.

If the virtual world is disabled for viewing (that is, the View property for the associated vrworld
object is set to 'off'), the view method does nothing.

Examples
myworld = vrworld('vrpend.wrl')
open(myworld)
view(myworld)

See Also
vrview | vrworld

Introduced before R2006a

 vrworld/view

10-155

Simulink 3D Animation Player
Play recorded 3D animation files

Description
Play recorded 3D animation files

The Simulink 3D Animation Player app plays 3D animation files created using the Simulink 3D
Animation animation recording functionality.

You can control the playing of the animation using toolbar buttons or Playback menu options. For
example, you can step forward or reverse, fast forward, or jump. For keyboard shortcuts, see vrplay.

To create an additional Simulink 3D Animation Player window, in the Simulink 3D Animation Player,
select File > New Window.

Open the Simulink 3D Animation Player App
• Simulink

Toolstrip: On the Apps tab, under Simulation Graphics and Reporting, click the app icon.
• MATLAB Toolstrip: On the Apps tab, under Simulation Graphics and Reporting, click the app

icon.
• MATLAB command prompt: Enter vrplay.

Examples
Play an Animation File

To play the animation file based on the vr_octavia example, run
vrplay('octavia_scene_anim.wrl').

1 In the MATLAB Apps tab, in the Simulation Graphics and Reporting section, click 3D
Animation Player.

2 In the Simulink 3D Animation Player, select File > Open. Navigate to matlab/toolbox/sl3d/
sl3ddemos/octavia_scene_anim.wrl.

3 Select Playback > Play.

10 Functions

10-156

See Also
Apps
3D World Editor

Functions
vrview | vrsetpref

Topics
“Play Animation Files” on page 4-27
“Play Animation Files” on page 7-31
“Play Animations with Simulink 3D Animation Viewer” on page 7-35
“Animation Recording” on page 4-10
“File Name Tokens” on page 4-14

Introduced in R2006a

 Simulink 3D Animation Player

10-157

3D World Editor
Edit virtual worlds for 3D animation

Description
Edit virtual worlds for 3D animation

The 3D World Editor app creates virtual worlds for visualizing and verifying dynamic system
behavior using Simulink 3D Animation. Build virtual worlds with Virtual Reality Modeling Language
(VRML) or X3D (Extensible 3D).

Use the 3D World Editor to:

• Create objects in the virtual world from scratch using X3D or VRML node types.
• Create objects using templates available in the 3D World Editor object library.
• Import objects exported from CAD tools.
• Simplify geometries of imported objects.
• Create or modify hierarchy of objects in the scene.
• Give objects in the virtual world unique names in order to access them from MATLAB and

Simulink.
• Set scene background, lighting and navigation properties.
• Define suitable viewpoints that are significant for working with the virtual world .

Open the 3D World Editor App
• Simulink

Toolstrip: On the Apps tab, under Simulation Graphics and Reporting, click the app icon.
• MATLAB Toolstrip: On the Apps tab, under Simulation Graphics and Reporting, click the app

icon.
• MATLAB command prompt: Enter vredit.

10 Functions

10-158

Examples
• “Create a Virtual World” on page 6-9
• “Build and Connect a Virtual World” on page 5-8
• “Edit a Virtual World” on page 6-11
• “Reduce Number of Polygons for Shapes” on page 6-20
• “Add Sound to a Virtual World” on page 5-35
• “View a Virtual World in Stereoscopic Vision” on page 7-45
• “Virtual Reality World and Dynamic System Examples” on page 1-16

See Also
Apps
Simulink 3D Animation Player

Functions
vrsetpref | vrview

Topics
“Create a Virtual World” on page 6-9
“Build and Connect a Virtual World” on page 5-8
“Edit a Virtual World” on page 6-11
“Reduce Number of Polygons for Shapes” on page 6-20
“Add Sound to a Virtual World” on page 5-35
“View a Virtual World in Stereoscopic Vision” on page 7-45
“Virtual Reality World and Dynamic System Examples” on page 1-16
“3D World Editor” on page 6-2
“X3D Support” on page 1-9
“Virtual Reality Modeling Language (VRML)” on page 1-11
“3D World Editor Library” on page 6-26
“Virtual World Navigation in 3D World Editor” on page 6-21

Introduced in R2010b

 3D World Editor

10-159

	Getting Started
	Simulink 3D Animation Product Description
	Expected Background
	Workflow for Building and Using Virtual Worlds
	Virtual Reality World Models of Dynamic Systems
	Set up Your Working Environment
	Build a Virtual Reality World
	Link to a Virtual Reality World
	View Dynamic System Simulations
	Share Dynamic System Simulation Visualizations

	MATLAB Compiler Support
	X3D Support
	X3D
	Relationship of X3D and VRML
	X3D Support in Simulink 3D Animation
	Convert a VRML File to X3D Format

	Virtual Reality Modeling Language (VRML)
	Relationship of VRML and X3D
	VRML
	VRML Support
	VRML Compatibility
	Virtual World Coordinate System
	VRML File Format

	Virtual Reality World and Dynamic System Examples
	Simulink Interface Examples
	MATLAB Interface Examples

	Installation
	Set the Default Viewer
	Set Simulink 3D Animation Preferences
	Simulink 3D Animation Preferences Dialog Box
	3D World Editor Preferences Dialog Box
	Canvas Preferences Dialog Box
	Figure Appearance Preferences Dialog Box
	Figure Rendering Preferences Dialog Box
	Figure 2-D Recording Preferences Dialog Box
	Figure Frame Capture Preferences
	World Preferences Dialog Box

	Install V-Realm Editor
	V-Realm Editor Installation on Windows Platforms
	V-Realm Builder Help
	Uninstall V-Realm Builder

	Test the Viewer Installation
	Section Overview
	Simulink Testing
	MATLAB Testing

	Simulink Interface
	Connect Virtual Worlds and Models
	Output Simulation Data to a Virtual World
	Input Virtual World Data to a Model
	Change the Associated Virtual World

	Open a Viewer Window
	Display Virtual World and Start Simulation
	View Virtual World on Host Computer
	View Virtual World Remotely
	Modify Remote Virtual World Via Sensor Events
	Interact with Generated Code

	MATLAB Interface
	Create vrworld Object for a Virtual World
	Open a Virtual World with MATLAB
	Interact with a Virtual World with MATLAB
	Set Values for Nodes
	Read Sensor Values Using MATLAB

	Close and Delete a vrworld Object
	Animation Recording
	Recording Formats
	Manual and Scheduled Animation Recording

	Define File Name Tokens
	Default File Name Format
	Uses for File Name Tokens

	File Name Tokens
	Manual 3-D Recording with MATLAB
	Manual 2-D AVI Recording with MATLAB
	Scheduled 3-D Recording with MATLAB
	Scheduled 2-D AVI Recording with MATLAB
	Record Animations for Unconnected Virtual Worlds
	Play Animation Files
	Play Virtual World Animation Files
	Play AVI Animation Files

	Build Virtual Reality Worlds
	Choose a Virtual World Editor
	Editors for Virtual Worlds
	Set the Default Editor

	Build and Connect a Virtual World
	Introduction
	Define the Problem
	Add a Simulink 3D Animation Block
	Open a New Virtual World
	Add Nodes
	Link to a Simulink Model

	Use Sensors
	Add Sensors to Virtual Worlds
	Read Sensor Values

	Detect Object Collisions
	Set Up Collision Detection
	Use Collision Detection Data in Models
	Use Collision Detection in MATLAB
	Use Collision Detection Data in Virtual Worlds

	Virtual World Data Types
	Field Data Types
	Virtual World Data Class Types

	Simulink 3D Animation Textures
	Add Sound to a Virtual World
	Use CAD Models with the Simulink 3D Animation Product
	Use of CAD Designs
	Import CAD Designs
	Integrate the Imported Model Virtual World

	Import STL and Physical Modeling XML Files
	Results

	Import 3D Models from CAD Tools
	Level of Detail Considerations
	Units Used in Exported Files
	Coordinate System Used
	Assembly Hierarchy

	Import VRML Models from CATIA Software
	CATIA Coordinate Systems
	Settings That Affect the VRML Output
	Level of Detail
	VRML Export Filter Settings
	VRML Models Exported from the CATIA Environment
	Adjust the Resulting VRML Files

	Modify the CAD Model Virtual World
	Wrap Shape Objects with Transforms
	Add DEF Names
	Additional Virtual World Modifications

	Import Visual Representations of Robot Models
	Import a DAE File
	Import a URDF File
	Import an SDF File
	Define Viewpoint to Make Imported Model Visible
	Limitations

	Link to Simulink and Simscape Multibody Models
	Link the Virtual World to a Simulink Model
	Initial Conditions
	VR Placeholder and VR Signal Expander Blocks
	Link to Simscape Multibody Models
	Link to a MATLAB Model

	Using the 3D World Editor
	3D World Editor
	Supported Platforms
	Use with Other Editors
	VRML and X3D Support
	Nodes, Library Objects, and Templates

	Open the 3D World Editor
	3D World Editor Is the Default Editor
	Open an Empty Virtual World
	Open a Saved Virtual World
	3D World Editor Panes
	Preferences for 3D World Editor Startup

	Create a Virtual World
	Edit a Virtual World
	Add Objects
	Copy and Paste a Node
	Edit Object Properties
	Document a Virtual World Using Comments
	Display Event Fields
	Expand and Collapse Nodes
	Highlight Nodes and Virtual World Objects
	Wrap Nodes as Children of Another Node
	Remove Nodes
	Save and Export Virtual World 3D Files
	Edit VRML and X3D Scripts

	Reduce Number of Polygons for Shapes
	Virtual World Navigation in 3D World Editor
	Specify Virtual World Rendering
	Basic Navigation
	Coordinate Axes Triad
	View Panes
	Pivot Point
	View All/View Selected

	3D World Editor Library
	3D World Editor Library Objects
	Add a Library Object
	Guidelines for Using Custom Objects

	Viewing Virtual Worlds
	Virtual World Viewers
	Host and Remote Viewing
	Comparison of Viewers

	Simulink 3D Animation Viewer
	What You Can Do with the Viewer
	Viewer Uses MATLAB Figures
	Set Viewer Appearance Preferences

	Open the Simulink 3D Animation Viewer
	Open from the VR Sink Block
	Open from the Command Line

	Simulate with the Simulink 3D Animation Viewer
	Adjust Navigation Settings

	Specify Rendering Techniques
	Turn Off Rendering for Performance

	Navigate Using the Simulink 3D Animation Viewer
	Basic Navigation
	Navigation Panel
	Viewer Keyboard Shortcuts
	Mouse Navigation
	Navigation Control Menu
	Change the Navigation Speed
	Sensors Effect on Navigation
	Display a Coordinate Axes Triad
	Pivot Point

	Set Viewpoints
	Define Viewpoints
	Reset Viewpoints

	Navigate Through Viewpoints
	Record Offline Animations
	Animation Recording
	Recording Formats
	File Names
	Start and Stop Animation Recording
	Play Animation Files
	Record 3–D Animation Files
	Record in Audio Video Interleave (AVI) Format
	Schedule Files for Recording

	Play Animations with Simulink 3D Animation Viewer
	Configure Frame Capture Parameters
	Capture Frames
	Simulink 3D Animation Web Viewer
	Open the Web Viewer
	Set up for Remote Viewing
	Connect the Web Viewer

	Navigate Using the Web Viewer
	Display and Navigation
	Keyboard Shortcuts
	Web Viewer Preferences

	Listen to Sound in a Virtual World
	System Requirements for Sound
	Listen to Sound

	View a Virtual World in Stereoscopic Vision
	Enable Stereoscopic Vision
	Control Stereoscopic Effects

	Active Stereoscopic Vision Configuration
	Computer Platforms
	Graphics Cards
	Display Devices
	Graphic Card Connection to Display Devices
	Examples of Stereoscopic Vision Setups

	Simulink 3D Animation Stand-Alone Viewer
	Orbisnap Viewer
	What Is Orbisnap?

	Install Orbisnap
	Section Overview
	System Requirements
	Copying Orbisnap to Another Location
	Adding Shortcuts or Symbolic Links

	Start Orbisnap
	Orbisnap Interface
	Menu Bar
	Toolbar
	Navigation Panel

	Navigate Using Orbisnap
	View Animations or Virtual Worlds with Orbisnap
	View Virtual Worlds Remotely with Orbisnap

	Blocks
	Cross Product
	Joystick Input
	MATLAB to VR Coordinates
	Normalize Vector
	Rotation Between 2 Vectors
	Rotation Matrix to VR Rotation
	Space Mouse Input
	Viewpoint Direction to VR Orientation
	VR Placeholder
	VR RigidBodyTree
	VR to MATLAB Coordinates
	VR Rotation to Rotation Matrix
	VR Signal Expander
	VR Sink
	VR Source
	VR Text Output
	VR To Video
	VR Tracer

	Functions
	stl2vrml
	vrcadcleanup
	vr.canvas
	vr.canvas.capture
	vrclear
	vrclose
	vrcoordm2vr
	vrcoordvr2m
	vrdir2ori
	vrdrawnow
	vredit
	vrfigure
	vrfigure.capture
	vrfigure.close
	vrfigure.get
	vrfigure.isvalid
	vrfigure.set
	vrgcbf
	vrgcf
	vrgetpref
	vrifs2patch
	vrimport
	vrinsertrobot
	vrinstall
	vrjoystick
	vrjoystick.axis
	vrjoystick.button
	vrjoystick.caps
	vrjoystick.close
	vrjoystick.force
	vrjoystick.pov
	vrjoystick.read
	vrlib
	vrnode
	vrnode/delete
	vrnode/fields
	vrnode/get
	vrnode/getfield
	vrnode/isvalid
	vrnode/set
	vrnode/setfield
	vrnode/sync
	vrori2dir
	vrpatch2ifs
	vrphysmod
	vrplay
	vrrotvec
	vrrotmat2vec
	vrrotvec2mat
	vrsetpref
	vrspacemouse
	vr.utils.stereo3d
	vrupdaterobot
	vrview
	vrwho
	vrwhos
	vrworld
	vrworld/addexternproto
	vrworld/close
	vrworld/delete
	vrworld/edit
	vrworld/get
	vrworld/isvalid
	vrworld/nodes
	vrworld/open
	vrworld/reload
	vrworld/save
	vrworld/set
	vrworld/view
	Simulink 3D Animation Player
	3D World Editor

